网址:http://m.1010jiajiao.com/timu_id_526603[举报]
如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.
(Ⅰ)设Q为AE的中点,证明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,
AO=DO=2.AODM
因为Q为AE的中点,所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二问中,作MNAE,垂足为N,连接DN
因为AOEO, DOEO,EO平面AOD,所以EODM
,因为AODM ,DM平面AOE
因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,
AO=DO=2.AODM
因为Q为AE的中点,所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足为N,连接DN
因为AOEO, DOEO,EO平面AOD,所以EODM
,因为AODM ,DM平面AOE
因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值为
查看习题详情和答案>>
在中,,分别是角所对边的长,,且
(1)求的面积;
(2)若,求角C.
【解析】第一问中,由又∵∴∴的面积为
第二问中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C为内角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面积为 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C为内角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
查看习题详情和答案>>
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,于是,所以
(2) ,设平面PCD的法向量,
则,即.不防设,可得.可取平面PAC的法向量于是从而.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)证明:由,可得,又由,,故.又,所以.
(2)如图,作于点H,连接DH.由,,可得.
因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值为.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
查看习题详情和答案>>
设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足
【解析】(1)解:设点P的坐标为.由题意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为.
由条件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为.
由P在椭圆上,有
因为,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
查看习题详情和答案>>