摘要:(13)1023 提示:
网址:http://m.1010jiajiao.com/timu_id_516782[举报]
已知函数f(x)=ax-ln(x+1)(a∈R),
(Ⅰ)求f(x)的单调区间;(友情提示:[ln(x+1)]′=
)
(Ⅱ)求证:当n∈N*时,1+
+
+…+
>ln(n+1);
(Ⅲ)当a取什么值时,存在一次函数g(x)=kx+b,使得对任意x>-1都有f(x)≥g(x)≥x-x2,并求出g(x)的解析式.
查看习题详情和答案>>
(Ⅰ)求f(x)的单调区间;(友情提示:[ln(x+1)]′=
1 |
x+1 |
(Ⅱ)求证:当n∈N*时,1+
1 |
2 |
1 |
3 |
1 |
n |
(Ⅲ)当a取什么值时,存在一次函数g(x)=kx+b,使得对任意x>-1都有f(x)≥g(x)≥x-x2,并求出g(x)的解析式.
以下正确命题的个数为( )
①命题“存在x0∈R,2x0≤0”的否定是:“不存在x0∈R,2x0>0”;
②函数f(x)=x
-(
)x的零点在区间(
,
)内;
③若函数f(x)满足f(1)=1且f(x+1)=2f(x),则f(1)+f(2)+…+f(10)=1023;
④函数f(x)=e-x-ex切线斜率的最大值是2.
①命题“存在x0∈R,2x0≤0”的否定是:“不存在x0∈R,2x0>0”;
②函数f(x)=x
1 |
3 |
1 |
4 |
1 |
4 |
1 |
3 |
③若函数f(x)满足f(1)=1且f(x+1)=2f(x),则f(1)+f(2)+…+f(10)=1023;
④函数f(x)=e-x-ex切线斜率的最大值是2.
查看习题详情和答案>>
通过计算可得下列等式:
22-12=2×1+1;
32-22=2×2+1;
42-32=2×3+1;
…;
(n+1)2-n2=2n+1
将以上各式相加得:(n+1)2-12=2×(1+2+3+…+n)+n
所以可得:1+2+3+…+n=
.
类比上述求法:请你求出13+23+33+…+n3的值.(提示:12+22+32+…+n2=
)
查看习题详情和答案>>
22-12=2×1+1;
32-22=2×2+1;
42-32=2×3+1;
…;
(n+1)2-n2=2n+1
将以上各式相加得:(n+1)2-12=2×(1+2+3+…+n)+n
所以可得:1+2+3+…+n=
n(n+1) |
2 |
类比上述求法:请你求出13+23+33+…+n3的值.(提示:12+22+32+…+n2=
n(n+1)(2n+1) |
6 |