网址:http://m.1010jiajiao.com/timu_id_51604[举报]
一、选择题:
1,3,5
二、填空题
13. 14.190 15.②④ 16.
三、解答题
17.(1)
…………4分
∵A为锐角,∴,∴,
∴当时, …………6分
(2)由题意知,∴.
又∵,∴,∴, …………8分
又∵,∴, …………9分
由正弦定理得 …………12分
18.解:(I)由函数
…………2分
…………6分
(II)由,
…………8分
, …………10分
故要使方程 …………12分
19.(I)连接BD,则AC⊥BD,
∵D1D⊥地面ABCD,∴AC⊥D1D
∴AC⊥平面BB1D1D,
∵D1P平面BB1D1D,∴D1P⊥AC.…………4分
(II)解:设连D1O,PO,
∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,
又∵D1O∩PO=0,
∴AC⊥平面POD1 ………………6分
∵AB=2,∠ABC=60°,
∴AO=CO=1,BO=DO=,
∴D1O=
…………9分
…………12分
20.解:(I)当 ; …………1分
当
验证,
…………5分
(II)该商场预计销售该商品的月利润为
,
…………7分
(舍去)……9分
综上5月份的月利润最大是3125元。 …………12分
21.解:(I)∵|OA1|=|OA2|=|OA3|=2, …………1分
∴外接圆C以原点O为圆心,线段OA1为半径,故其方程为……3分
∴所求椭圆C1的方程是 …………6分
(II)直线PQ与圆C相切。
证明:设
∴直线OQ的方程为 …………8分
因此,点Q的坐标为
…………10分
综上,当2时,OP⊥PQ,故直线PQ始终与圆C相切。 …………12分
22.解:(I)由题意知: …………2分
解得
故 …………4分
(II),
当, …………6分
故数列 …………10分
(III)若
从而,
得 …………11分
即数列 …………13分
且 …………14分
(本小题满分14分)
已知函数。
(1)证明:
(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m
(3)设数列满足:,设,
若(2)中的满足对任意不小于2的正整数,恒成立,
试求的最大值。
(本小题满分14分)已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)当点在轴上移动时,求动点的轨迹方程;
(本小题满分14分)设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。