摘要:(1)求的单调递减区间(用表示),
网址:http://m.1010jiajiao.com/timu_id_512432[举报]
已知函数在取得极值
(1)求的单调区间(用表示);
(2)设,,若存在,使得成立,求的取值范围.
【解析】第一问利用
根据题意在取得极值,
对参数a分情况讨论,可知
当即时递增区间: 递减区间: ,
当即时递增区间: 递减区间: ,
第二问中, 由(1)知: 在,
,
在
从而求解。
解:
…..3分
在取得极值, ……………………..4分
(1) 当即时 递增区间: 递减区间: ,
当即时递增区间: 递减区间: , ………….6分
(2) 由(1)知: 在,
,
在
……………….10分
, 使成立
得:
查看习题详情和答案>>
已知函数图像上一点处的切线方程为,其中、、为常数.
(1)函数是否存在单调递减区间?若存在,则求出单调递减区间(用表示);
(2)若不是函数的极值点,求证:函数的图像关于点对称.
查看习题详情和答案>>设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.
(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标,求点的坐标(用的代数式表示);(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)
查看习题详情和答案>>