摘要:因此. . --12分∵ABC-A1B1C1是正三棱柱.∴ CC1⊥平面ABC.∵ AD⊥C1D. ∴ AD⊥BC. ∴ D是BC的中点. --3分 连结AC1与A1C相交于E点.在△A1BC中.∵D.E是中点. ∴A1B∥DE.又DE在平面AC1D内.∴A1B∥平面AC1D. --6分
网址:http://m.1010jiajiao.com/timu_id_50531[举报]
(2013•陕西)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.
查看习题详情和答案>>
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.
先后抛掷2枚均匀的硬币.
①一共可能出现多少种不同的结果?
②出现“1枚正面,1枚反面”的结果有多少种?
③出现“1枚正面,1枚反面”的概率是多少?
④有人说:“一共可能出现‘2枚正面’、‘2枚反面’、‘1枚正面,1枚反面’这3种结果,因此出现‘1枚正面,1枚反面’的概率是
.”这种说法对不对?
查看习题详情和答案>>
①一共可能出现多少种不同的结果?
②出现“1枚正面,1枚反面”的结果有多少种?
③出现“1枚正面,1枚反面”的概率是多少?
④有人说:“一共可能出现‘2枚正面’、‘2枚反面’、‘1枚正面,1枚反面’这3种结果,因此出现‘1枚正面,1枚反面’的概率是
1 | 3 |
(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
=1,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
查看习题详情和答案>>
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2 | x1-x2 |
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)
.在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.
查看习题详情和答案>>
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
在一次恶劣气候的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人。请你根据所给数据判定是否在恶劣气候飞行中男人比女人更容易晕机?
查看习题详情和答案>>