网址:http://m.1010jiajiao.com/timu_id_504523[举报]
一、选择题(每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
A
B
B
C
C
A
D
C
D
二、填空题(每小题5分,共20分)
11. 8 ; 12. AC⊥BD ( ABCD是正方形或菱形);
13. ; 14. ;
三、解答题(本大题共6小题,共80分. 解答应写出文字说明、证明过程或演算步骤)
15.(本小题满分12分)
解:(1) …………………………1分
………………………………2分
. ………………………………………4分
的最小正周期是. …………………………………6分
(2)由得 …………………….8分
∵,∴ ∴ …………10分
∴ ………………………………………………12分
16.(本小题满分12分)
解:(1)当时,,对任意
为偶函数 ……………………3分
当时,
取,得
函数既不是奇函数,也不是偶函数……6分
(2)解法一:要使函数在上为增函数等价于在上恒成立 ……………8分
即在上恒成立,故在上恒成立
∴ …………………………………10分
∴ 的取值范围是 ………………………………12分
解法二:设
………8分
要使函数在上为增函数,必须恒成立
,即恒成立 …………………………………10分
又,
的取值范围是 ………………………………12分
17.(本小题满分14分)
证明: (1)取PC的中点G,连结FG、EG
∴FG为△CDP的中位线 ∴FGCD……1分
∵四边形ABCD为矩形,E为AB的中点
∴ABCD ∴FGAE
∴四边形AEGF是平行四边形 ………………2分
∴AF∥EG ………3分
又EG平面PCE,AF平面PCE ………4分
∴AF∥平面PCE ………………………………………5分
(2)∵ PA⊥底面ABCD
∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A
∴CD⊥平面ADP
又AF平面ADP ∴CD⊥AF ……………………………… 6分
直角三角形PAD中,∠PDA=45°
∴△PAD为等腰直角三角形 ∴PA=AD=2 ………………………… 7分
∵F是PD的中点
∴AF⊥PD,又CDPD=D
∴AF⊥平面PCD ……………………………… 8分
∵AF∥EG
∴EG⊥平面PCD …………………………… 9分
又EG平面PCE
平面PCE⊥平面PCD …………………………… 10分
(3)三棱锥C-BEP即为三棱锥P-BCE ……………………………11分
PA是三棱锥P-BCE的高,
Rt△BCE中,BE=1,BC=2,
∴三棱锥C-BEP的体积
VC-BEP=VP-BCE= … 14分
18.(本小题满分14分)
解:(1)由已知得 解得.…………………1分
设数列的公比为,由,可得.
又,可知,即, …………………4分
解得.
由题意得. .………………………………………… 6分
故数列的通项为. … ……………………………………8分
(2)由于 由(1)得
= ………………………………………10分
又
是首项为公差为的等差数列 ……………12分
…………………………14分
19.(本小题满分14分)
解:(1)如图,设为动圆圆心, ,过点作直线的垂线,垂足为,由题意知: ……………………………………2分
即动点到定点与到定直线的距离相等,
由抛物线的定义知,点的轨迹为抛物线,其中为焦点,
为准线,
∴动圆圆心的轨迹方程为 ……………………………………5分
(2)由题可设直线的方程为
由得
△, ………………………………………………7分
设,,则, ………………………9分
由,即 ,,于是,……11分
即,,
,解得或(舍去), …………………13分
又, ∴ 直线存在,其方程为 ……………14分
20.(本小题满分14分)
解:(1)由已知,得,比较两边系数,
得. ……………………4分
(2)令,要有三个不等的实数根,则函数有
一个极大值和一个极小值,且极大值大于0,极小值小于0. …………5分
由已知,得有两个不等的实根,
, 得.……… 6分
又,,将代入(1)(3),有,又
., ………8分
则,且在处取得极大值,在处取得极小值10分 故要有三个不等的实数根,
则必须 ……………… 12分
解得. ………………… 14分
(I)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由. 查看习题详情和答案>>
m |
3 |
n |
m |
m |
n |
π |
4 |
π |
3 |
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间. 查看习题详情和答案>>
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008