网址:http://m.1010jiajiao.com/timu_id_502032[举报]
由所有既属于集合A又属于集合B的元素所成的集合,叫做A与B的________,记作A∩B,即A∩B={x|x∈A,且x∈B}.
可这样理解:交集A∩B是由两集合A与B的“公有”元素所组成的集合.用Venn图表示,如图.
易知:(1)若两集合A与B无公共关系,则A∩B=________;
(2)A∩B________A,A∩B________B;
(3)A∩A=________,A∩
=________,A∩B=B∩A;
(4)若A
B,则A∩B=________;若A∩B=A,则A________B;
(5)设U为全集,则A∩(
A)=________.
(1)在抛物线上任取二点P1(x1,y1),P2(x2,y2),经过线段P1P2的中点作直线平行于抛物线的轴,和抛物线交于点P3,证明△P1P2P3的面积为
| 1 | 16 |
(2)经过线段P1P3、P2P3的中点分别作直线平行于抛物线的轴,与抛物线依次交于Q1、Q2,试将△P1P3Q1与△P2P3Q2的面积和用y1,y2表示出来;
(3)仿照(2)又可做出四个更小的三角形,如此继续下去可以做一系列的三角形,由此设法求出线段P1P2与抛物线所围成的图形的面积. 查看习题详情和答案>>
(1)当a=
| 1 |
| 3 |
(2)当a=
| 1 |
| 3 |
(3)若a>0,函数f(x)在区间(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
| y2 |
| m |
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P在
| EF |
| EP |
| 1 |
| 3 |
| PF |
(2)如果直线l的斜率为
| 2 |
| MA |
| MB |
| 9 |
| 2 |
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
查看习题详情和答案>>