ÌâÄ¿ÄÚÈÝ
![¾«Ó¢¼Ò½ÌÍø](http://thumb.zyjl.cn/pic3/upload/images/201010/25/cc5deee1.png)
£¨1£©ÔÚÅ×ÎïÏßÉÏÈÎÈ¡¶þµãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¾¹ýÏ߶ÎP1P2µÄÖеã×÷Ö±ÏßƽÐÐÓÚÅ×ÎïÏßµÄÖᣬºÍÅ×ÎïÏß½»ÓÚµãP3£¬Ö¤Ã÷¡÷P1P2P3µÄÃæ»ýΪ
1 | 16 |
£¨2£©¾¹ýÏ߶ÎP1P3¡¢P2P3µÄÖеã·Ö±ð×÷Ö±ÏßƽÐÐÓÚÅ×ÎïÏßµÄÖᣬÓëÅ×ÎïÏßÒÀ´Î½»ÓÚQ1¡¢Q2£¬ÊÔ½«¡÷P1P3Q1Óë¡÷P2P3Q2µÄÃæ»ýºÍÓÃy1£¬y2±íʾ³öÀ´£»
£¨3£©·ÂÕÕ£¨2£©ÓÖ¿É×ö³öËĸö¸üСµÄÈý½ÇÐΣ¬Èç´Ë¼ÌÐøÏÂÈ¥¿ÉÒÔ×öһϵÁеÄÈý½ÇÐΣ¬ÓÉ´ËÉè·¨Çó³öÏ߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ý£®
·ÖÎö£º£¨1£©¸ù¾ÝP1ºÍP2µÄ×ø±ê¿É±íʾ³öP1P2µÄÖеãµÄ×ø±ê£¬½ø¶øÇóµÃP3µÄºá×ø±êºÍ×Ý×ø±ê£®´úÈë¡÷P1P2P3µÄÃæ»ý±í´ïʽ£¬»¯¼òÕûÀí¼´¿É£®
£¨2£©¸ù¾ÝP1ºÍP3µÄ×ø±ê¿É±íʾ³öP1P3µÄÖеãµÄ×ø±ê£¬¿ÉÇó³öµãQ1µÄºá¡¢×Ý×ø±êºÍµãQ2µÄºá¡¢×Ý×ø±ê£¬ÔÙÓÉÐÐÁÐʽÇóÃæ»ýµÄ·½·¨Çó³öÃæ»ý£®
£¨3£©¸ù¾ÝÏ߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ýµÈÓÚS¡÷p1p2p3 +£¨S¡÷P1 Q2P3+s¡÷p3Q2p2 £©¿ÉµÃµ½´ð°¸£®
£¨2£©¸ù¾ÝP1ºÍP3µÄ×ø±ê¿É±íʾ³öP1P3µÄÖеãµÄ×ø±ê£¬¿ÉÇó³öµãQ1µÄºá¡¢×Ý×ø±êºÍµãQ2µÄºá¡¢×Ý×ø±ê£¬ÔÙÓÉÐÐÁÐʽÇóÃæ»ýµÄ·½·¨Çó³öÃæ»ý£®
£¨3£©¸ù¾ÝÏ߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ýµÈÓÚS¡÷p1p2p3 +£¨S¡÷P1 Q2P3+s¡÷p3Q2p2 £©¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£º£¨1£©¡ßP1µÄ×ø±êΪ£¨x1£¬y1£©£¬P2µÄ×ø±êΪ£¨x2£¬y2£©£¬
¡àP1P2µÄÖеãΪM1(
£¬
)
µãP3µÄºá×ø±êx=
=
£¬×Ý×ø±êy=
¡÷P1P2P3µÄÃæ»ý=
µÄ¾ø¶ÔÖµ
=
|x1y2-x2y1+
(y1+y2)+
(y1+y2)2|
=
|
-
+
(y1+y2)+
(y1+y2)2|
=
|y1-y2|•|4y1y2-2(y1+y2)2+(y1+y2)2|
=
|y1-y2|•|-(y1-y2)2|
=
|y1 -y2|3£®
£¨2£©¡ßP1µÄ×ø±êΪ£¨x1£¬y1£©£¬
P3µÄ×ø±êΪ(
£¬
)£¬
¡àP1P3µÄÖеãΪM2(
£¬
)£¬
µãQ1µÄºá×ø±êx=
=
£¬×Ý×ø±êy=
.
ͬÀí£¬µãQ2µÄºá×ø±êx=
£¬×Ý×ø±êy=
.
¡÷P1P3Q1µÄÃæ»ý+¡÷P2P3Q2µÄÃæ»ý
=
µÄ¾ø¶ÔÖµ+
µÄ¾ø¶ÔÖµ
=
|y22[2(y1+y2)-(3y1+y2)]+
[2(y1+y2)-(3y1+y2)]+
[(3y1+y2)2-4(y1+y2)2]|+
|y22[2(y1+y2)-(y1+3y2)]+
[2(y1+y2)-(y1+3y2)]+
[(y1+3y2)2-4(y1+y2)2]|
=
|y2-y1|•|(y1-y2)2|+
|y1-y2|•|£¨y2-y1£©2|
=
|y1-y2|3£®
£¨3£©Ï߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ý
S=S¡÷p1p2p3 +£¨S¡÷P1 Q2P3+s¡÷p3Q2p2 £©
=
|y1-y2|3+
|y1-y2|3+
|y1-y2|3
=
=
|y1-y2|3£®
¡àP1P2µÄÖеãΪM1(
x1+x2 |
2 |
y1+y2 |
2 |
µãP3µÄºá×ø±êx=
y2 |
2 |
(y1+y2)2 |
8 |
y1+y2 |
2 |
¡÷P1P2P3µÄÃæ»ý=
1 |
2 |
|
=
1 |
2 |
x2-x1 |
2 |
y1-y2 |
8 |
=
1 |
2 |
y12y2 |
2 |
y1y22 |
2 |
y22-y12 |
2 |
y1-y2 |
8 |
=
1 |
16 |
=
1 |
16 |
=
1 |
16 |
£¨2£©¡ßP1µÄ×ø±êΪ£¨x1£¬y1£©£¬
P3µÄ×ø±êΪ(
(y1+y2)2 |
8 |
y1+y2 |
2 |
¡àP1P3µÄÖеãΪM2(
5y12+2y1y2+y22 |
16 |
3y1+y2 |
4 |
µãQ1µÄºá×ø±êx=
y2 |
2 |
(3y1+y2)2 |
32 |
3y1+y2 |
4 |
ͬÀí£¬µãQ2µÄºá×ø±êx=
(y1+3y2)2 |
32 |
y1+3y2 |
4 |
¡÷P1P3Q1µÄÃæ»ý+¡÷P2P3Q2µÄÃæ»ý
=
1 |
2 |
|
1 |
2 |
|
=
1 |
16 |
(y1+y2)(3y1+y2) |
8 |
y2 |
4 |
1 |
16 |
(y1+y2)(y1+3y2) |
8 |
y2 |
4 |
=
1 |
128 |
1 |
128 |
=
1 |
64 |
£¨3£©Ï߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ý
S=S¡÷p1p2p3 +£¨S¡÷P1 Q2P3+s¡÷p3Q2p2 £©
=
1 |
16 |
1 |
64 |
1 |
256 |
=
| ||
1-
|
1 |
12 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵĻù±¾ÐÔÖʺÍÓÃÐÐÁÐʽµÄ·½·¨ÇóÃæ»ý£®¿¼²é¼ÆËãÄÜÁ¦ºÍ×ÛºÏÔËÓÃÄÜÁ¦£®
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÅ×ÎïÏßy2=2x£¬ÉèµãAµÄ×ø±êΪ£¨
£¬0£©£¬ÔòÅ×ÎïÏßÉϾàµãA×î½üµÄµãPµÄ×ø±êΪ£¨¡¡¡¡£©
2 |
3 |
A¡¢£¨0£¬0£© |
B¡¢£¨0£¬1£© |
C¡¢£¨1£¬0£© |
D¡¢£¨-2£¬0£© |