摘要:则.两式相减得
网址:http://m.1010jiajiao.com/timu_id_502030[举报]
在实数集R上定义运算:x
y=x(a-y)(a∈R,a为常数),若f(x)=ex,g(x)=e-x+2x2,F(x)=f(x)
g(x),
(1)求F(x)的解析式;
(2)若F(x)在R上是减函数,求实数a的取值范围;
(3)若a=-3,则在F(x)的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.
13、已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n,
则其前n项和Tn=
查看习题详情和答案>>
则其前n项和Tn=
(n2-2n+3)•2n+1-6
.已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=
查看习题详情和答案>>
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=
(n2-2n+3)•2n+1-6
(n2-2n+3)•2n+1-6
.