摘要:CD ⊥BF BF⊥平面CDB1 EF为BE在平面CDB1内的射影
网址:http://m.1010jiajiao.com/timu_id_501920[举报]
![](http://thumb.zyjl.cn/pic3/upload/images/201301/30/e4cb82f3.png)
(1)证明:BF∥平面ADE;
(2)证明:AE⊥平面ACD;
(3)求三棱锥F-ABC的体积.
![](http://thumb.zyjl.cn/pic3/upload/images/201205/6/063993b6.png)
(1)求证:BF∥平面ACD;
(2)求多面体ADFCBE的体积.
(2011•松江区二模)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,沿EF将梯形ABCD翻折,使AE⊥平面EBCF(如图).设AE=x,四面体DFBC的体积记为f(x).
(1)写出f(x)表达式,并求f(x)的最大值;
(2)当x=2时,求二面角D-BF-E的余弦值.
![](http://thumb.zyjl.cn/pic3/upload/images/201111/31/2db72041.png)
查看习题详情和答案>>
π | 2 |
(1)写出f(x)表达式,并求f(x)的最大值;
(2)当x=2时,求二面角D-BF-E的余弦值.
![](http://thumb.zyjl.cn/pic3/upload/images/201111/31/2db72041.png)