摘要:[法二]以为原点.为轴.过点与垂直的直线为轴.
网址:http://m.1010jiajiao.com/timu_id_501448[举报]
(本小题满分13分)
在平面直角坐标系中,已知点,点
在直线
上运动,过点
与
垂直的直线和
的中垂线相交于点
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)设点是轨迹
上的动点,点
,
在
轴上,圆
(
为参数)内切于
,求
的面积的最小值.
设椭圆:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(1)求椭圆的离心率;
(2)若过、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(3)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
查看习题详情和答案>>