摘要:设平面的法向量为...所以
网址:http://m.1010jiajiao.com/timu_id_497773[举报]
请先阅读:
设平面向量
=(a1,a2),
=(b1,b2),且
与
的夹角为è,
因为
=|
||
|cosè,
所以
≤|
||
|.
即
,
当且仅当è=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有
成立;
(II)试求函数
的最大值.
请先阅读:
设平面向量
=(a1,a2),
=(b1,b2),且
与
的夹角为θ,
因为
•
=|
||
|cosθ,
所以
•
≤|
||
|.
即
,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有
成立;
(II)试求函数
的最大值.
查看习题详情和答案>>
设平面向量
因为
所以
即
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有
(II)试求函数
查看习题详情和答案>>
如图,四棱柱
中,
平面
,底面
是边长为
的正方形,侧棱
.
![]()
(1)求三棱锥
的体积;
(2)求直线
与平面
所成角的正弦值;
(3)若棱
上存在一点
,使得
,当二面角
的大小为
时,求实数
的值.
【解析】(1)在
中,![]()
.
(3’)
(2)以点D为坐标原点,建立如图所示的空间直角坐标系
,则
(4’)
,设平面
的法向量为
,
由
得
,
(5’)
则
,
. (7’)
(3)![]()
设平面
的法向量为
,由
得
,
(10’)
![]()
查看习题详情和答案>>