摘要:⑴求椭圆C的离心率, ⑵若过A.Q.F三点的圆恰好与直线l:相切.求椭圆C的方程.
网址:http://m.1010jiajiao.com/timu_id_497283[举报]
1.(1)因为,所以
又是圆O的直径,所以
又因为(弦切角等于同弧所对圆周角)
所以所以
又因为,所以相似
所以,即
(2)因为,所以,
因为,所以
由(1)知:。所以
所以,即圆的直径
又因为,即
解得
2.依题设有:
令,则
3.将极坐标系内的问题转化为直角坐标系内的问题
点的直角坐标分别为
故是以为斜边的等腰直角三角形,
进而易知圆心为,半径为,圆的直角坐标方程为
,即
将代入上述方程,得
,即
4.假设,因为,所以。
又由,则,
所以,这与题设矛盾
又若,这与矛盾
综上可知,必有成立
同理可证也成立
命题成立
5. 解:由a1=S1,k=.下面用数学归纳法进行证明.
1°.当n=1时,命题显然成立;
2°.假设当n=k(kN*)时,命题成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命题对n=k+1.成立
由1°, 2°,命题对任意的正整数n成立.
6.(1)因为,,
,所以
故事件A与B不独立。
(2)因为
所以
椭圆G:
+
=1(a>b>0)的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
•
=0.
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
;
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
F1M |
F2M |
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2 |
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
| ||
3 |
椭圆的中心是原点O,它的短轴长为2
,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若
•
=0,求直线PQ的方程;
(3)设
=λ
(λ>1),过点P且平行于准线l的直线与椭圆相交于另一点M,证明
=-λ
.
查看习题详情和答案>>
2 |
(1)求椭圆的方程及离心率;
(2)若
OP |
OQ |
(3)设
AP |
AQ |
FM |
FQ |
椭圆的中心是原点O,它的短轴长为2
,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若
•
=0,求直线PQ的方程.
查看习题详情和答案>>
2 |
(1)求椭圆的方程及离心率;
(2)若
OP |
OQ |