网址:http://m.1010jiajiao.com/timu_id_496825[举报]
一、填空题
1、 2、40 3、② ④) 4、-1 5、 6、3
7、 8、 9、1 10、 11、 12、46
13、解:(1)∵a⊥b,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),
故a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分
由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……… 6分
∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分
(2)∵α∈(),∴.
由tanα=-,求得,=2(舍去).
∴,…………………………………………………………12分
cos()== =. ……15分
14、解:由已知圆的方程为,
按平移得到.
∵∴.
即.
又,且,∴.∴.
设, 的中点为D.
由,则,又.
∴到的距离等于. 即, ∴.
∴直线的方程为:或.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
|
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
|
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.作
(1)选修4—2:矩阵与变换
若二阶矩阵满足.
(Ⅰ)求二阶矩阵;
(Ⅱ)把矩阵所对应的变换作用在曲线上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系中,曲线的参数方程为(t为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线与曲线C有两个不同的公共点、,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4—5:不等式选讲
已知函数的最小值为,实数满足.
(Ⅰ)求的值;
(Ⅱ)求证:.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2.
查看习题详情和答案>>
(Ⅰ)直线l1:x=-4先经过矩阵A=
|
|
(Ⅱ)已知直线l的参数方程:
|
2 |
π |
4 |
(Ⅲ)解不等式:|x|+2|x-1|≤4.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2 |
4 |
y2 |
9 |
(2)选修4一4:坐标系与参数方程
已知直线C1:
|
|
(Ⅰ)当α=
π |
3 |
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1 |
4b+1 |
4c+1 |