摘要: 下图是一个几何体的三视图.根据图中数据.可得该几何体的表面积是 ▲ .

网址:http://m.1010jiajiao.com/timu_id_492369[举报]

A.必做题部分

一、填空题:(本大题共14小题,每小题5分,共70分.)

1.  2. 3.共线 4.20 5. 6. 7.  8.2,5,10  9.16.4  10.1  11.7  12.  13.2   14.

二、解答题:

15.解:(1)

   

(2)   

余弦定理可得

又∵

16.证明  (1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD内的射影,

∵CD平面ABCD且CD⊥AD,∴CD⊥PD 

(2)取CD中点G,连EG、FG,

∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解  当平面PCD与平面ABCD成45°角时,直线EF⊥面PCD

证明  G为CD中点,则EG⊥CD,由(1)知FG⊥CD,故∠EGF为平面PCD与平面ABCD所成二面角的平面角  即∠EGF=45°,从而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

又F是PC的中点,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD

17.解:(1)依题意,距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线                                                                                   

  曲线方程是                                                                

(2)设圆心,因为圆

故设圆的方程                                       

得:

设圆与轴的两交点为,则 

在抛物线上,        

所以,当运动时,弦长为定值2                                             

18.解(1)设日销售量为

则日利润

(2)

①当2≤a≤4时,33≤a+31≤35,当35 <x<41时,

∴当x=35时,L(x)取最大值为

②当4<a≤5时,35≤a+31≤36,

易知当x=a+31时,L(x)取最大值为综合上得

19.解(1)据题意:

可行域如图(暂缺)

的几何意义是定点到区域内的点连线的斜率,

的取值范围为

(2)当有零点时,,满足条件为

由抛物线的下方与围成的区域面积

由直线围成的区域面积

有零点的概率

无零点的概率为

 

 (3)函数.

证明: 符合条件.

因为

同理:;                                 

    所以, 符合条件.              

20.(1)解:由已知:对于,总有 ①成立

   (n ≥ 2)② 

①--②得

均为正数,∴   (n ≥ 2)

∴数列是公差为1的等差数列                又n=1时,, 解得=1

.()  

(2)证明:∵对任意实数和任意正整数n,总有.……6分

 

(3)解:由已知  ,      

        

        易得 

        猜想 n≥2 时,是递减数列.

∵当

∴在为单调递减函数.

.

∴n≥2 时, 是递减数列.即是递减数列.

, ∴数列中的最大项为

B.附加题部分

三、附加题部分:

21.(必做题)(本小题满分12分)

解:(1)将代入

        由△可知

        另一方面,弦长AB,解得

(2)当时,直线为,要使得内接△ABC面积最大,

则只须使得

,即位于(4,4)点处.

 

22.(必做题)(本小题满分12分)

解:(1)分别记甲、乙、丙三个同学笔试合格为事件

表示事件“恰有一人通过笔试”

           则

 

   (2)解法一:因为甲、乙、丙三个同学经过两次考试后合格的概率均为

所以,故

解法二:分别记甲、乙、丙三个同学经过两次考试后合格为事件

所以

于是,

 

23.(选做题)(本小题满分8分)

证明:(1)过D点作DG∥BC,并交AF于G点,

      ∵E是BD的中点,∴BE=DE,

      又∵∠EBF=∠EDG,∠BEF=∠DEG,

      ∴△BEF≌△DEG,则BF=DG,

      ∴BF:FC=DG:FC,

      又∵D是AC的中点,则DG:FC=1:2,

      则BF:FC=1:2;

        (2)若△BEF以BF为底,△BDC以BC为底,

            则由(1)知BF:BC=1:3,

           又由BE:BD=1:2可知=1:2,其中分别为△BEF和△BDC的高,

,则=1:5.

 

 

 

 

 

 

 

 

24.(选做题)(本小题满分8分)

解:(1)消去参数,得直线的普通方程为;-----------------------2分

两边同乘以

消去参数,得⊙的直角坐标方程为:

 

(2)圆心到直线的距离

所以直线和⊙相交.

 

25.(选做题)(本小题满分8分)

解:MN = =

    即在矩阵MN变换下

即曲线在矩阵MN变换下的函数解析式为

 

 

26.(选做题)(本小题满分8分)

证明:(1)当时,左边=时成立 

(2)假设当时成立,即

那么当时,左边

时也成立                  

根据(1)(2)可得不等式对所有的都成立     

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网