摘要:(2)若数列满足.求使对于一切,都成立的的取值集合.
网址:http://m.1010jiajiao.com/timu_id_49217[举报]
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题:(本大题共5个小题,每小题5分,共25分,)
11. 12. 13. 14. 15.
三、解答题:
对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
),且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.
查看习题详情和答案>>
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
1 |
2 |
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009 |
2n |
对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
),且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.
查看习题详情和答案>>
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
1 |
2 |
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009 |
2n |
对于数列
{an},如果存在确定的正整数T,使得an+T=an对一切正整数n都成立,则称数列{an}是以T为周期的周期数列.若一个周期数列{an}满足an+2=an+1-an,n∈N+,且a1=1,a2=2,求a200,a2009.