题目内容
对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
),且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009;
(2)若{an}满足a1=p∈[0,
1 |
2 |
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009 |
2n |
分析:(1)an+6=an+5-an-4=an+4-an+3-an-4=-an+3=-an+2+an+1=-(an+1-an)+an+1=an,得T=6,由此能求出 S2009=S5=a3=1003.
(2)当p=0时,a1=a2=0,an+1=-2an2+2an=0,即{an}是周期数列,由此能推导出数列{an}是递增数列,非周期数列.
(3)由S2=a1+a2=a1+1005=1007,知a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,且数列{an}是周期为6的周期数列,由此能推导出存在最小的自然数n=1506,对一切自然数m,当m≥n=1506,都有bm>2009.
(2)当p=0时,a1=a2=0,an+1=-2an2+2an=0,即{an}是周期数列,由此能推导出数列{an}是递增数列,非周期数列.
(3)由S2=a1+a2=a1+1005=1007,知a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,且数列{an}是周期为6的周期数列,由此能推导出存在最小的自然数n=1506,对一切自然数m,当m≥n=1506,都有bm>2009.
解答:解:(1)an+6=an+5-an-4=an+4-an+3-an-4
=-an+3=-an+2+an+1=-(an+1-an)+an+1=an,
得T=6
所以,数列{an}是以6为周期的周期数列,
周期为任意正整数--(2分)
又由
,
得a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003S6=0,
且数列{an}是以6为周期的周期数列,
所以,S6n=0,
所以 S2009=S5=a3=1003--(3分)
(2)当p=0时,a1=a2=0,an+1=-2an2+2an=0,
即{an}是周期数列--(5分)
当p≠0,p∈(0,
)时,
an+1=-2
+2an═-2(an-
)2+
∈(0,
)
由已知a1=p∈[0,
),
且an+1=-2an2+2an,
可得a2∈[0,
),
依此类推可得a_∈[0,
)(n∈N*)
所以 an+1-an=-2an2+an=an(1-2an)>0,所以an+1>an
即数列{an}是递增数列,非周期数列;--(8分)
(3)由(1)知,S2=a1+a2=a1+1005=1007,
所以a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,
且数列{an}是周期为6的周期数列,
所以(an)max=1005(n∈N*),(an)min=-1005,
且 a6n+1=2,a6n+2=1003,a6n+3=1005,a6n+4=-2,
a6n+5=-1005,a6n+6=-1003,--(9分)
而当n≥12时,
∈(0,
),
bn=an+2n+
≥2n-1005+
>2009,
即2n≥2009+1005=30142n+
≥1004,
得n≥1507,即 n≥1507时,
都有bn>2009;--(12分)
又b1506=a1506+2×1506+
=2009+
>2009b1505=a1505+2×1505+
=2007+
<2009--(13分)
综上,存在最小的自然数n=1506,
对一切自然数m,当m≥n=1506,
都有bm>2009.--(14分)
=-an+3=-an+2+an+1=-(an+1-an)+an+1=an,
得T=6
所以,数列{an}是以6为周期的周期数列,
周期为任意正整数--(2分)
又由
|
得a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003S6=0,
且数列{an}是以6为周期的周期数列,
所以,S6n=0,
所以 S2009=S5=a3=1003--(3分)
(2)当p=0时,a1=a2=0,an+1=-2an2+2an=0,
即{an}是周期数列--(5分)
当p≠0,p∈(0,
1 |
2 |
an+1=-2
a | 2 n |
1 |
2 |
1 |
2 |
1 |
2 |
由已知a1=p∈[0,
1 |
2 |
且an+1=-2an2+2an,
可得a2∈[0,
1 |
2 |
依此类推可得a_∈[0,
1 |
2 |
所以 an+1-an=-2an2+an=an(1-2an)>0,所以an+1>an
即数列{an}是递增数列,非周期数列;--(8分)
(3)由(1)知,S2=a1+a2=a1+1005=1007,
所以a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,
且数列{an}是周期为6的周期数列,
所以(an)max=1005(n∈N*),(an)min=-1005,
且 a6n+1=2,a6n+2=1003,a6n+3=1005,a6n+4=-2,
a6n+5=-1005,a6n+6=-1003,--(9分)
而当n≥12时,
2009 |
2n |
1 |
2 |
bn=an+2n+
2009 |
2n |
2009 |
2n |
即2n≥2009+1005=30142n+
2009 |
2n |
得n≥1507,即 n≥1507时,
都有bn>2009;--(12分)
又b1506=a1506+2×1506+
2009 |
21506 |
2009 |
21506 |
2009 |
21505 |
2009 |
21506 |
综上,存在最小的自然数n=1506,
对一切自然数m,当m≥n=1506,
都有bm>2009.--(14分)
点评:本题考查数列和不等式的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐条件,合理地进行等价转化.
练习册系列答案
相关题目
对于数列{an},若满足a1,
,
,…,
,…是首项为1,公比为2的等比数列,则a100等于( )
a2 |
a1 |
a3 |
a2 |
an |
an-1 |
A、2100 |
B、299 |
C、25050 |
D、24950 |