网址:http://m.1010jiajiao.com/timu_id_491298[举报]
一、选择题(每小题5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空题(每小题4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答题
17.解:(Ⅰ)在中,由及余弦定理得
而,则;
(Ⅱ)由及正弦定理得,
而,则
于是,
由得,当即时,。
18解:(Ⅰ)基本事件共有36个,方程有正根等价于,即。设“方程有两个正根”为事件,则事件包含的基本事件为共4个,故所求的概率为;
(Ⅱ)试验的全部结果构成区域,其面积为
设“方程无实根”为事件,则构成事件的区域为
,其面积为
故所求的概率为
19.解:(Ⅰ)证明:由平面及得平面,则
而平面,则,又,则平面,
又平面,故。
(Ⅱ)在中,过点作于点,则平面.
由已知及(Ⅰ)得.
故
(Ⅲ)在中过点作交于点,在中过点作交于点,连接,则由得
由平面平面,则平面
再由得平面,又平面,则平面.
故当点为线段上靠近点的一个三等分点时,平面.
20.解:(Ⅰ)设等差数列的公差为,
则,
(Ⅱ)由
得,故数列适合条件①
而,则当或时,有最大值20
即,故数列适合条件②.
综上,故数列是“特界”数列。
21.证明:消去得
设点,则,
由,,即
化简得,则
即,故
(Ⅱ)解:由
化简得
由得,即
故椭圆的长轴长的取值范围是。
22.解:(Ⅰ),由在区间上是增函数
则当时,恒有,
即在区间上恒成立。
由且,解得.
(Ⅱ)依题意得
则,解得
而
故在区间上的最大值是。
(Ⅲ)若函数的图象与函数的图象恰有3个不同的交点,
即方程恰有3个不等的实数根。
而是方程的一个实数根,则
方程有两个非零实数根,
则即且.
故满足条件的存在,其取值范围是.
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由. 查看习题详情和答案>>
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.
(09年宜昌一中12月月考文)(12分)已知是定义在上的函数,且满足下列条件:
① 对任意的、,;
② 当时,.
(1)证明在上是减函数;
(2)在整数集合内,关于的不等式的解集为,求实数的取值范围. 查看习题详情和答案>>