摘要: ⑴对排列定义的理解.定义:从n个不同的元素中任取m个元素.按照一定顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.⑵相同排列.如果,两个排列相同.不仅这两个排列的元素必须完全相同.而且排列的顺序也必须完全相同.⑶排列数.
网址:http://m.1010jiajiao.com/timu_id_490927[举报]
设函数
(1)求函数y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[0,]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[,](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn(-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.
查看习题详情和答案>>
(1)求函数y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[0,]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[,](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn(-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.
查看习题详情和答案>>
设函数
(1)求函数y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[0,]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[,](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn(-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.
查看习题详情和答案>>
(2012•浦东新区一模)设函数T(x)=
(1)求函数y=T(sin(
x))和y=sin(
T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[0,
]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[
,
](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn(
-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.
查看习题详情和答案>>
|
(1)求函数y=T(sin(
π |
2 |
π |
2 |
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[0,
1 |
2n |
已知下面正确的命题:当x∈[
i-1 |
2n |
i+1 |
2n |
i |
2n-1 |
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.