ÌâÄ¿ÄÚÈÝ

£¨2012•ÆÖ¶«ÐÂÇøһģ£©É躯ÊýT(x)=
2x£¬  0¡Üx£¼
1
2
2(1-x)£¬  
1
2
¡Üx¡Ü1

£¨1£©Çóº¯Êýy=T£¨sin£¨
¦Ð
2
x£©£©ºÍy=sin£¨
¦Ð
2
T£¨x£©£©µÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔڷǸºÊµÊýa£¬Ê¹µÃaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶¨ÒåTn+1£¨x£©=Tn£¨T£¨x£©£©£¬ÇÒT1£¨x£©=T£¨x£©£¬£¨n¡ÊN*£©
¢Ùµ±x¡Ê[0£¬
1
2n
]ʱ£¬Çóy=Tn£¨x£©µÄ½âÎöʽ£»
ÒÑÖªÏÂÃæÕýÈ·µÄÃüÌ⣺µ±x¡Ê[
i-1
2n
£¬
i+1
2n
]£¨i¡ÊN*£¬1¡Üi¡Ü2n-1£©Ê±£¬¶¼ÓÐTn£¨x£©=Tn£¨
i
2n-1
-x£©ºã³ÉÁ¢£®
¢Ú¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬Èô·½³ÌTm£¨x£©=kxÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬È·¶¨kµÄÈ¡Öµ·¶Î§£»Èô½«ÕâЩ¸ù´ÓСµ½´óÅÅÁÐ×é³ÉÊýÁÐ{xn}£¨1¡Ün¡Ü2m£©£¬ÇóÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍ£®
·ÖÎö£º£¨1£©ÓÉ0¡Üsin
¦Ð
2
x£¼
1
2
ºÍ
1
2
¡Üsin
¦Ð
2
x¡Ü1
£¬½â³öxµÄ·¶Î§£¬È»ºóÖ±½Ó°Ñsin
¦Ð
2
x
´úÈë·Ö¶Îº¯Êý½âÎöʽ¼´¿É£¬
Çóy=sin£¨
¦Ð
2
T£¨x£©£©µÄ½âÎöʽ¿É°ÑT£¨x£©Ö±½Ó´úÈ룮
£¨2£©·Ö±ðд³öº¯Êýy=aT£¨x£©ºÍy=T£¨ax£©µÄ½âÎöʽ£¬ÓɽâÎöʽ¿´³öµ±a=0ʱaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬
¶øa£¾0ʱ£¬Ö±½ÓÓÉaT£¨x£©=T£¨ax£©¿´³öaÈ¡1ʱ´ËµÈʽ³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
1
2n
]ʱ£¬x¡Ê[0£¬
1
2
£©£¬ÔòÔÚº¯ÊýT£¨x£©=2xµÄ½âÎöʽÖУ¬ÒÀ´ÎÈ¡x=2x¿ÉÇóy=Tn£¨x£©µÄ½âÎöʽ£»
¢Ú¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£ºµ±x¡Ê[
i-1
2n
£¬
i+1
2n
]£¨i¡ÊN*£¬1¡Üi¡Ü2n-1£©Ê±£¬¶¼ÓÐTn£¨x£©=Tn£¨
i
2n-1
-x£©ºã³ÉÁ¢£¬
Çó³öµ±x¡Ê[
i
2n
£¬
i+1
2n
]
£¨i¡ÊN£¬0¡Üi¡Ü2n-1£©Ê±µÄTn£¨x£©µÄ½âÎöʽ£¬ÔÙÓÉ·½³ÌTm£¨x£©=kxÇóµÃµ±x¡Ê[
i
2m
£¬
i+1
2m
](i¡ÊN£¬0¡Üi¡Ü2m-1)
ʱ£¬x=
(2i+1)-(-1)i
2m+1-(-1)i2k
£¬ÄÇô£¬ÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍ¿ÉÀûÓ÷Ö×é½øÐÐÇóºÍ£®
½â´ð£º½â£º£¨1£©ÓÉ0¡Üsin
¦Ð
2
x£¼
1
2
£¬µÃ£º4k¡Üx£¼4k+
1
3
»ò4k+
5
3
£¼x¡Ü4k+2
£¨k¡ÊZ£©£¬
ÓÉ
1
2
¡Üsin
¦Ð
2
x¡Ü1
£¬µÃ£º4k+
1
3
¡Üx¡Ü4k+
5
3
£¨k¡ÊZ£©£®
ËùÒÔ£¬º¯Êýy=T[sin(
¦Ð
2
x)]
=
2sin(
¦Ð
2
x)  x¡Ê[4k£¬4k+
1
3
)¡È(4k+
5
3
£¬4k+2]  k¡ÊZ
2-2sin(
¦Ð
2
x)  x¡Ê[4k+
1
3
£¬4k+
5
3
]  k¡ÊZ
£¬

º¯Êýy=sin(
¦Ð
2
T(x))
=
sin
¦Ð
2
(2x)      x¡Ê[0£¬
1
2
)
sin
¦Ð
2
(2-2x)  x¡Ê[
1
2
£¬1]
£¬
ËùÒÔ£¬y=sin(
¦Ð
2
T(x))=sin(¦Ðx)  x¡Ê[0£¬1]
£®
£¨2£©y=aT(x)=
2ax         0¡Üx£¼
1
2
2a(1-x)  
1
2
¡Üx¡Ü1
£¬
y=T(ax)=
2ax         0¡Üax£¼
1
2
2(1-ax)  
1
2
¡Üax¡Ü1
£®
µ±a=0ʱ£¬ÔòÓÐa£¨T£¨x£©£©=T£¨ax£©=0ºã³ÉÁ¢£®
µ±a£¾0ʱ£¬µ±ÇÒ½öµ±a=1ʱÓÐa£¨T£¨x£©£©=T£¨ax£©=T£¨x£©ºã³ÉÁ¢£®
×ÛÉÏ¿ÉÖªµ±a=0»òa=1ʱ£¬a£¨T£¨x£©£©=T£¨ax£©ºã³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
1
2n
]
ʱ£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýi¡ÊN*£¬1¡Üi¡Ün-1£¬
¶¼ÓÐ0¡Ü2ix¡Ü
1
2
£¬
¹ÊÓÐy=Tn(x)=Tn-1(2x)=Tn-2(22x)=¡­=Tn-i(2ix)=¡­=T(2n-1x)=2nx£®
¢ÚÓÉ¢Ù¿ÉÖªµ±x¡Ê[0£¬
1
2n
]
ʱ£¬ÓÐTn(x)=2nx£¬¸ù¾ÝÃüÌâµÄ½áÂۿɵã¬
µ±x¡Ê[
1
2n
£¬
2
2n
]⊆[
0
2n
£¬
2
2n
]
ʱ£¬ÓÐ
1
2n-1
-x¡Ê[
0
2n
£¬
1
2n
]⊆[
0
2n
£¬
2
2n
]
£¬
¹ÊÓÐTn(x)=Tn(
1
2n-1
-x)=2n(
1
2n-1
-x)
=-2nx+2£®
Òò´ËͬÀí¹éÄɵõ½£¬µ±x¡Ê[
i
2n
£¬
i+1
2n
]
£¨i¡ÊN£¬0¡Üi¡Ü2n-1£©Ê±£¬
Tn(x)=(-1)i(2nx-i-
1
2
)+
1
2
=
2nx-i          iÊÇżÊý
-2nx+i+1  iÊÇÆæÊý
£®
¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬µ±x¡Ê[
i
2m
£¬
i+1
2m
](i¡ÊN£¬0¡Üi¡Ü2m-1)
ʱ£¬
½â·½³ÌTm£¨x£©=kxµÃ£¬x=
(2i+1)-(-1)i
2m+1-(-1)i2k
£¬
Ҫʹ·½³ÌTm£¨x£©=kxÔÚx¡Ê[0£¬1]ÉÏÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬
¶ÔÓÚÈÎÒâi¡ÊN£¬0¡Üi¡Ü2m-1£¬±ØÐë
i
2m
£¼
(2i+1)-(-1)i
2m+1-(-1)i2k
£¼
i+1
2m
ºã³ÉÁ¢£¬
½âµÃk¡Ê(0£¬
2m
2m-1
)
£¬Èô½«ÕâЩ¸ù´ÓСµ½´óÅÅÁÐ×é³ÉÊýÁÐ{xn}£¬
Óɴ˿ɵÃxn=
(2n-1)+(-1)n
2m+1+(-1)n2k
  £¨n¡ÊN*£¬1¡Üi¡Ü2m£©£®
¹ÊÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍΪ£º
S=x1+x2+¡­+x2m-1+x2m
=
0+2+4+¡­+(2m-2)
2m-k
+
2+4+6+¡­+2m
2m+k

=
2m-1(4m-2k)
4m-k2
£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨£¬¿¼²éÁ˺¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²éÁËÊýÁеĺ¯ÊýÌØÐÔ¼°ÊýÁеķÖ×éÇóºÍ£¬ÌرðÊÇ£¨3£©ÖеĢÚÉæ¼°µ½¸´ÔÓÌõ¼þϵĺ¯Êý½âÎöʽµÄÇó½â¼°·½³Ì¸ùµÄÎÊÌ⣬ÐèҪѧÉúÓÐÇåÎúµÄÍ·ÄÔ£¬¿¼²éÁËѧÉú½øÐи´ÔÓÔËËãµÄÄÜÁ¦£¬´ËÌâÊÇÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø