ÌâÄ¿ÄÚÈÝ
£¨2012•ÆÖ¶«ÐÂÇøһģ£©É躯ÊýT(x)=
£¨1£©Çóº¯Êýy=T£¨sin£¨
x£©£©ºÍy=sin£¨
T£¨x£©£©µÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔڷǸºÊµÊýa£¬Ê¹µÃaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶¨ÒåTn+1£¨x£©=Tn£¨T£¨x£©£©£¬ÇÒT1£¨x£©=T£¨x£©£¬£¨n¡ÊN*£©
¢Ùµ±x¡Ê[0£¬
]ʱ£¬Çóy=Tn£¨x£©µÄ½âÎöʽ£»
ÒÑÖªÏÂÃæÕýÈ·µÄÃüÌ⣺µ±x¡Ê[
£¬
]£¨i¡ÊN*£¬1¡Üi¡Ü2n-1£©Ê±£¬¶¼ÓÐTn£¨x£©=Tn£¨
-x£©ºã³ÉÁ¢£®
¢Ú¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬Èô·½³ÌTm£¨x£©=kxÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬È·¶¨kµÄÈ¡Öµ·¶Î§£»Èô½«ÕâЩ¸ù´ÓСµ½´óÅÅÁÐ×é³ÉÊýÁÐ{xn}£¨1¡Ün¡Ü2m£©£¬ÇóÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍ£®
|
£¨1£©Çóº¯Êýy=T£¨sin£¨
¦Ð |
2 |
¦Ð |
2 |
£¨2£©ÊÇ·ñ´æÔڷǸºÊµÊýa£¬Ê¹µÃaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶¨ÒåTn+1£¨x£©=Tn£¨T£¨x£©£©£¬ÇÒT1£¨x£©=T£¨x£©£¬£¨n¡ÊN*£©
¢Ùµ±x¡Ê[0£¬
1 |
2n |
ÒÑÖªÏÂÃæÕýÈ·µÄÃüÌ⣺µ±x¡Ê[
i-1 |
2n |
i+1 |
2n |
i |
2n-1 |
¢Ú¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬Èô·½³ÌTm£¨x£©=kxÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬È·¶¨kµÄÈ¡Öµ·¶Î§£»Èô½«ÕâЩ¸ù´ÓСµ½´óÅÅÁÐ×é³ÉÊýÁÐ{xn}£¨1¡Ün¡Ü2m£©£¬ÇóÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍ£®
·ÖÎö£º£¨1£©ÓÉ0¡Üsin
x£¼
ºÍ
¡Üsin
x¡Ü1£¬½â³öxµÄ·¶Î§£¬È»ºóÖ±½Ó°Ñsin
x´úÈë·Ö¶Îº¯Êý½âÎöʽ¼´¿É£¬
Çóy=sin£¨
T£¨x£©£©µÄ½âÎöʽ¿É°ÑT£¨x£©Ö±½Ó´úÈ룮
£¨2£©·Ö±ðд³öº¯Êýy=aT£¨x£©ºÍy=T£¨ax£©µÄ½âÎöʽ£¬ÓɽâÎöʽ¿´³öµ±a=0ʱaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬
¶øa£¾0ʱ£¬Ö±½ÓÓÉaT£¨x£©=T£¨ax£©¿´³öaÈ¡1ʱ´ËµÈʽ³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
]ʱ£¬x¡Ê[0£¬
£©£¬ÔòÔÚº¯ÊýT£¨x£©=2xµÄ½âÎöʽÖУ¬ÒÀ´ÎÈ¡x=2x¿ÉÇóy=Tn£¨x£©µÄ½âÎöʽ£»
¢Ú¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£ºµ±x¡Ê[
£¬
]£¨i¡ÊN*£¬1¡Üi¡Ü2n-1£©Ê±£¬¶¼ÓÐTn£¨x£©=Tn£¨
-x£©ºã³ÉÁ¢£¬
Çó³öµ±x¡Ê[
£¬
]£¨i¡ÊN£¬0¡Üi¡Ü2n-1£©Ê±µÄTn£¨x£©µÄ½âÎöʽ£¬ÔÙÓÉ·½³ÌTm£¨x£©=kxÇóµÃµ±x¡Ê[
£¬
](i¡ÊN£¬0¡Üi¡Ü2m-1)ʱ£¬x=
£¬ÄÇô£¬ÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍ¿ÉÀûÓ÷Ö×é½øÐÐÇóºÍ£®
¦Ð |
2 |
1 |
2 |
1 |
2 |
¦Ð |
2 |
¦Ð |
2 |
Çóy=sin£¨
¦Ð |
2 |
£¨2£©·Ö±ðд³öº¯Êýy=aT£¨x£©ºÍy=T£¨ax£©µÄ½âÎöʽ£¬ÓɽâÎöʽ¿´³öµ±a=0ʱaT£¨x£©=T£¨ax£©ºã³ÉÁ¢£¬
¶øa£¾0ʱ£¬Ö±½ÓÓÉaT£¨x£©=T£¨ax£©¿´³öaÈ¡1ʱ´ËµÈʽ³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
1 |
2n |
1 |
2 |
¢Ú¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£ºµ±x¡Ê[
i-1 |
2n |
i+1 |
2n |
i |
2n-1 |
Çó³öµ±x¡Ê[
i |
2n |
i+1 |
2n |
i |
2m |
i+1 |
2m |
(2i+1)-(-1)i |
2m+1-(-1)i2k |
½â´ð£º½â£º£¨1£©ÓÉ0¡Üsin
x£¼
£¬µÃ£º4k¡Üx£¼4k+
»ò4k+
£¼x¡Ü4k+2£¨k¡ÊZ£©£¬
ÓÉ
¡Üsin
x¡Ü1£¬µÃ£º4k+
¡Üx¡Ü4k+
£¨k¡ÊZ£©£®
ËùÒÔ£¬º¯Êýy=T[sin(
x)]=
£¬
º¯Êýy=sin(
T(x))=
£¬
ËùÒÔ£¬y=sin(
T(x))=sin(¦Ðx) x¡Ê[0£¬1]£®
£¨2£©y=aT(x)=
£¬
y=T(ax)=
£®
µ±a=0ʱ£¬ÔòÓÐa£¨T£¨x£©£©=T£¨ax£©=0ºã³ÉÁ¢£®
µ±a£¾0ʱ£¬µ±ÇÒ½öµ±a=1ʱÓÐa£¨T£¨x£©£©=T£¨ax£©=T£¨x£©ºã³ÉÁ¢£®
×ÛÉÏ¿ÉÖªµ±a=0»òa=1ʱ£¬a£¨T£¨x£©£©=T£¨ax£©ºã³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
]ʱ£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýi¡ÊN*£¬1¡Üi¡Ün-1£¬
¶¼ÓÐ0¡Ü2ix¡Ü
£¬
¹ÊÓÐy=Tn(x)=Tn-1(2x)=Tn-2(22x)=¡=Tn-i(2ix)=¡=T(2n-1x)=2nx£®
¢ÚÓÉ¢Ù¿ÉÖªµ±x¡Ê[0£¬
]ʱ£¬ÓÐTn(x)=2nx£¬¸ù¾ÝÃüÌâµÄ½áÂۿɵã¬
µ±x¡Ê[
£¬
]⊆[
£¬
]ʱ£¬ÓÐ
-x¡Ê[
£¬
]⊆[
£¬
]£¬
¹ÊÓÐTn(x)=Tn(
-x)=2n(
-x)=-2nx+2£®
Òò´ËͬÀí¹éÄɵõ½£¬µ±x¡Ê[
£¬
]£¨i¡ÊN£¬0¡Üi¡Ü2n-1£©Ê±£¬
Tn(x)=(-1)i(2nx-i-
)+
=
£®
¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬µ±x¡Ê[
£¬
](i¡ÊN£¬0¡Üi¡Ü2m-1)ʱ£¬
½â·½³ÌTm£¨x£©=kxµÃ£¬x=
£¬
Ҫʹ·½³ÌTm£¨x£©=kxÔÚx¡Ê[0£¬1]ÉÏÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬
¶ÔÓÚÈÎÒâi¡ÊN£¬0¡Üi¡Ü2m-1£¬±ØÐë
£¼
£¼
ºã³ÉÁ¢£¬
½âµÃk¡Ê(0£¬
)£¬Èô½«ÕâЩ¸ù´ÓСµ½´óÅÅÁÐ×é³ÉÊýÁÐ{xn}£¬
Óɴ˿ɵÃxn=
£¨n¡ÊN*£¬1¡Üi¡Ü2m£©£®
¹ÊÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍΪ£º
S=x1+x2+¡+x2m-1+x2m
=
+
=
£®
¦Ð |
2 |
1 |
2 |
1 |
3 |
5 |
3 |
ÓÉ
1 |
2 |
¦Ð |
2 |
1 |
3 |
5 |
3 |
ËùÒÔ£¬º¯Êýy=T[sin(
¦Ð |
2 |
|
º¯Êýy=sin(
¦Ð |
2 |
|
ËùÒÔ£¬y=sin(
¦Ð |
2 |
£¨2£©y=aT(x)=
|
y=T(ax)=
|
µ±a=0ʱ£¬ÔòÓÐa£¨T£¨x£©£©=T£¨ax£©=0ºã³ÉÁ¢£®
µ±a£¾0ʱ£¬µ±ÇÒ½öµ±a=1ʱÓÐa£¨T£¨x£©£©=T£¨ax£©=T£¨x£©ºã³ÉÁ¢£®
×ÛÉÏ¿ÉÖªµ±a=0»òa=1ʱ£¬a£¨T£¨x£©£©=T£¨ax£©ºã³ÉÁ¢£»
£¨3£©¢Ùµ±x¡Ê[0£¬
1 |
2n |
¶¼ÓÐ0¡Ü2ix¡Ü
1 |
2 |
¹ÊÓÐy=Tn(x)=Tn-1(2x)=Tn-2(22x)=¡=Tn-i(2ix)=¡=T(2n-1x)=2nx£®
¢ÚÓÉ¢Ù¿ÉÖªµ±x¡Ê[0£¬
1 |
2n |
µ±x¡Ê[
1 |
2n |
2 |
2n |
0 |
2n |
2 |
2n |
1 |
2n-1 |
0 |
2n |
1 |
2n |
0 |
2n |
2 |
2n |
¹ÊÓÐTn(x)=Tn(
1 |
2n-1 |
1 |
2n-1 |
Òò´ËͬÀí¹éÄɵõ½£¬µ±x¡Ê[
i |
2n |
i+1 |
2n |
Tn(x)=(-1)i(2nx-i-
1 |
2 |
1 |
2 |
|
¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¬µ±x¡Ê[
i |
2m |
i+1 |
2m |
½â·½³ÌTm£¨x£©=kxµÃ£¬x=
(2i+1)-(-1)i |
2m+1-(-1)i2k |
Ҫʹ·½³ÌTm£¨x£©=kxÔÚx¡Ê[0£¬1]ÉÏÇ¡ÓÐ2m¸ö²»Í¬µÄʵÊý¸ù£¬
¶ÔÓÚÈÎÒâi¡ÊN£¬0¡Üi¡Ü2m-1£¬±ØÐë
i |
2m |
(2i+1)-(-1)i |
2m+1-(-1)i2k |
i+1 |
2m |
½âµÃk¡Ê(0£¬
2m |
2m-1 |
Óɴ˿ɵÃxn=
(2n-1)+(-1)n |
2m+1+(-1)n2k |
¹ÊÊýÁÐ{xn}ËùÓÐ2mÏîµÄºÍΪ£º
S=x1+x2+¡+x2m-1+x2m
=
0+2+4+¡+(2m-2) |
2m-k |
2+4+6+¡+2m |
2m+k |
=
2m-1(4m-2k) |
4m-k2 |
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨£¬¿¼²éÁ˺¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²éÁËÊýÁеĺ¯ÊýÌØÐÔ¼°ÊýÁеķÖ×éÇóºÍ£¬ÌرðÊÇ£¨3£©ÖеĢÚÉæ¼°µ½¸´ÔÓÌõ¼þϵĺ¯Êý½âÎöʽµÄÇó½â¼°·½³Ì¸ùµÄÎÊÌ⣬ÐèҪѧÉúÓÐÇåÎúµÄÍ·ÄÔ£¬¿¼²éÁËѧÉú½øÐи´ÔÓÔËËãµÄÄÜÁ¦£¬´ËÌâÊÇÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿