摘要:不妨设.则..
网址:http://m.1010jiajiao.com/timu_id_484876[举报]
函数y=ax3+bx2+cx+d(a≠0)的导函数为y=3ax2+2bx+c,不妨把方程y=3ax2+2bx+c=0称为导方程,其判别式△=4(b2-3ac),若△>0,设其两根为x1,x2,则当a<0,△≤0时,三次函数的图象是( )
查看习题详情和答案>>
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
,h(x)=
(c≠0,ad-bc≠0,(d-a)2+4bc>0)
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
}是等比数列,并求
an;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期. 查看习题详情和答案>>
设函数g(x)=
4x+2 |
x+3 |
ax+b |
cx+d |
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1 |
an-x2 |
lim |
n→∞ |
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期. 查看习题详情和答案>>
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=,h(x)=
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证是等比数列,并求;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
查看习题详情和答案>>
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
,h(x)=
(c≠0,ad-bc≠0,(d-a)2+4bc>0)
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
}是等比数列,并求
an;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
查看习题详情和答案>>
设函数g(x)=
4x+2 |
x+3 |
ax+b |
cx+d |
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1 |
an-x2 |
lim |
n→∞ |
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
已知函数y=f(x)(x∈D),方程f(x)=x的根x称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=,h(x)=
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证是等比数列,并求;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
查看习题详情和答案>>
设函数g(x)=,h(x)=
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证是等比数列,并求;
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
查看习题详情和答案>>