网址:http://m.1010jiajiao.com/timu_id_484854[举报]
(本小题满分12分)已知函数
(I)若函数在区间
上存在极值,求实数a的取值范围;
(II)当时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为
,则
令
,
则,
当时,
;当
时,
在(0,1)上单调递增,在
上单调递减,
即当时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当时,
恒成立,即
,
令,则
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
查看习题详情和答案>>
设f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一问中,
即变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;
第二问中因为,所以
,则
,又
,
,从而
进而得到结论。
(Ⅰ) 解:
即。…………………………………3分
变换的步骤是:
①把函数的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;…………………………………3分
(Ⅱ) 解:因为,所以
,则
,又
,
,从而
……2分
(1)当时,
;…………2分
(2)当时;
查看习题详情和答案>>
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
线段s与线段s1的关系 | m、r的取值或表达式 |
s所在直线平行于s1所在直线 | |
s所在直线平分线段s1 |