摘要:又由的中点E面点到面BDC1的距离=点C到面BDC1的距离.
网址:http://m.1010jiajiao.com/timu_id_481210[举报]
正方体ABCD-A1B1C1D1 中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:
①AA1⊥MN;
②MN∥平面A1B1C1D1;
③MN与A1C1异面;
④点B1到面BDC1的距离为
;⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD-A1B1C1D1 上的截面为等边三角形.其中有可能成立的结论为
查看习题详情和答案>>
①AA1⊥MN;
②MN∥平面A1B1C1D1;
③MN与A1C1异面;
④点B1到面BDC1的距离为
| ||
3 |
①②③④
①②③④
.正方体ABCD-A1B1C1D1 中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:
①AA1⊥MN;
②MN∥平面A1B1C1D1;
③MN与A1C1异面;
④点B1到面BDC1的距离为
;
⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD-A1B1C1D1 上的截面为等边三角形.
其中有可能成立的结论为 ( )
①AA1⊥MN;
②MN∥平面A1B1C1D1;
③MN与A1C1异面;
④点B1到面BDC1的距离为
| ||
3 |
⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD-A1B1C1D1 上的截面为等边三角形.
其中有可能成立的结论为 ( )
查看习题详情和答案>>
如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是( )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于
查看习题详情和答案>>