网址:http://m.1010jiajiao.com/timu_id_481088[举报]
难点磁场
歼灭难点训练
答案:A
答案:C
三、5.解:(1)由{an+1-an}是公比为
的等比数列,且a1=
,a2=
,
∴an+1-an=(a2-
a1)(
)n-1=(
-
×
)(
)n-1=
,
又由数列{lg(an+1-an)}是公差为-1的等差数列,且首项lg(a2-
a1)
∴其通项lg(an+1-an)=-2+(n-1)(-1)=-(n+1),
∴an+1-an=10-(n+1),即an+1=
an+10-(n+1) ②
同理f(4a)=0 ②
由①②可知f(x)必含有(x-2a)与(x-4a)的因式,由于f(x)是x的三次多项式,故可设f(x)=A(x-2a)(x-4a)(x-C),这里A、C均为待定的常数,
同理,由于=1,得A(4a-2a)(4a-C)=1,即8a2A-2aCA=1 ④
由③④得C=3a,A=,因而f(x)=
(x-2a)(x-4a)(x-3a),
由数列{an}、{bn}都是由正数组成的等比数列,知p>0,q>0
8.解:(1)an=(n-1)d,bn=2=2(n-1)d?
Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d?
(2)当d>0时,2d>1





(1)求数列{an}的通项公式;
(2)Sn=a1+a2+…+an(n≥1),求Sn.
a2n-1 |
a2n |
(1)写出数列{an}的通项公式;
(2)求Sn;
(3)证明:当n≥6时,2-Sn<
1 |
n |
(1)求数列{an}的通项公式;
(2)若bn=log2an,
1 |
b3b4 |
1 |
b4b5 |
1 |
bnbn+1 |