网址:http://m.1010jiajiao.com/timu_id_481021[举报]
在△ABC中,为三个内角为三条边,且
(I)判断△ABC的形状;
(II)若,求的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,则A=C,∴是等腰三角形。
(2)
查看习题详情和答案>>
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
【解析】本试题主要考查了余弦定理的运用。利用由题意得,
,并且有得到结论。
解:(Ⅰ)由题意得,………1分…………1分
(Ⅱ)………………1分
查看习题详情和答案>>
在四棱锥中,平面,底面为矩形,.
(Ⅰ)当时,求证:;
(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,
又因为,………………2分
又,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2, 设平面POQ的法向量为
,所以 平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
解:(Ⅰ)当时,底面ABCD为正方形,
又因为,又………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,
设平面POQ的法向量为
,所以 平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
查看习题详情和答案>>