网址:http://m.1010jiajiao.com/timu_id_476272[举报]
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得证明
(3)因为∴为面的法向量.∵,,
∴为平面的法向量.∴利用法向量的夹角公式,,
∴与的夹角为,即二面角的大小为.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴,又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴为面的法向量.∵,,
∴为平面的法向量.∴,
∴与的夹角为,即二面角的大小为
查看习题详情和答案>>
如图,在三棱锥中,平面平面,,,,为中点.(Ⅰ)求点B到平面的距离;(Ⅱ)求二面角的余弦值.
【解析】第一问中利用因为,为中点,所以
而平面平面,所以平面,再由题设条件知道可以分别以、、为,, 轴建立直角坐标系得,,,,,,
故平面的法向量而,故点B到平面的距离
第二问中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因为,为中点,所以
而平面平面,所以平面,
再由题设条件知道可以分别以、、为,, 轴建立直角坐标系,得,,,,
,,故平面的法向量
而,故点B到平面的距离
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
查看习题详情和答案>>
如图,已知向量,可构成空间向量的一个基底,若,在向量已有的运算法则的基础上,新定义一种运算,显然的结果仍为一向量,记作.
1、求证:向量为平面的法向量;
2、求证:以为边的平行四边形的面积等于;
将四边形按向量平移,得到一个平行六面体,试判断平行六面体的体积与的大小.
查看习题详情和答案>>