网址:http://m.1010jiajiao.com/timu_id_474055[举报]
【注意:本题的要求是,参照标①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(Ⅰ)证明的全过程;并解答(Ⅱ).】
如图:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.
(Ⅰ)证明:
①∵ BE=a,CF=2a,BE∥CF,延长FE与CB延长线交于D,连结AD.
∴ △DBE∽△DCF
∴
②_____________________
∴ DB=AB.
③______________________
∴ DA⊥AC
④_______________________
∴ FA⊥AD
⑤_________________________
∴ 面AEF⊥面ACF.
查看习题详情和答案>>
【注意:本题的要求是,参照标①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(Ⅰ)证明的全过程;并解答(Ⅱ).】
如图:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.
(Ⅰ)证明:
①∵ BE=a,CF=2a,BE∥CF,延长FE与CB延长线交于D,连结AD.
∴ △DBE∽△
∴
②_____________________
∴ DB=AB.
③______________________
∴ DA⊥AC
④_______________________
∴ FA⊥AD
⑤_________________________
∴ 面AEF⊥面ACF.
查看习题详情和答案>>
如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ)证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,
∴OF∥EA且OF=且BD=
∴OF∥DB,OF=DB,
∴四边形BDOF是平行四边形。
∴OD∥FB
第二问中,当N是EM中点时,ON⊥平面ABDE。 ………7分
证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,
∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,
∴ON⊥平面ABDE。
查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.
(Ⅰ)求证:CN∥平面AMB1;
(Ⅱ)求证: B1M⊥平面AMG.
【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明
第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。
解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分
∵CM ,NP ,∴CM NP, …………2分
∴CNPM是平行四边形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奂 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
设:AC=2a,则
…………………………8分
同理,…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
………………………………10分
查看习题详情和答案>>