网址:http://m.1010jiajiao.com/timu_id_47165[举报]
一、选择题(本大题共8小题,每小题5分,共40分.)
题号
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
答案
D
B
A
C
D
C
B
C
二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)
(9) (10) 或 (11)
(12) , (13) (14)4,8
三、解答题(本大题共6小题,共80分.)
(15) (共12 分)
解:(I),,
= ?
2分
4分
= . 5分
又 6分
函数的最大值为. 7分
当且仅当(Z)时,函数取得最大值为.
(II)由(Z), 9分
得 (Z). 11分
函数的单调递增区间为[](Z). 12分
(16) (共14分)
解法一:(I)证明:连结A1D,在正方体AC1中, ∵A1B1^平面A1ADD1,
\ A1D是PD在平面A1ADD1 内的射影. 2分
在正方形A1ADD1中, A1D^ AD1, \ PD⊥AD1. 4分
解(II) 取中点,连结,,则//.
平面,∴平面.
∴为在平面内的射影.
则为CP与平面D1DCC1所成的角. 7分
在中,
∴与平面D1DCC1所成的角的正弦值为. 9分
(III)在正方体AC1中,∥.
平面内,
∴∥平面.
∴点到平面的距离与点C1到平面的距离相等.
又平面,面,
∴平面平面.
又平面平面,
过C1作C1H于H,则C1H平面.
∴C1的长为点C1到平面的距离. 12分
连结C1 ,并在上取点,使//.
在中,,得.
∴点到平面的距离为. 14分
解法二:如图,以D为坐标原点,建立空间直角坐标系.
由题设知正方体棱长为4,则、、
、、、. 1分
(I)设,. 3分
, . 4分
(II)由题设可得, , 故.
, 是平面
的法向量. 7分
. 8分
∴与平面D1DCC1所成角的正弦值为. 9分
(III),设平面D1DP的法向量,
∵.
则,即令,则
. 12分
点C到平面D1DP的距离为. 14分
(17)(共13分)
解(I)设事件“某人参加A种竞猜活动只获得一个福娃奖品”为事件M, 1分
依题意,答对一题的概率为,则
P(M)= 3分
=. 4分
(II)依题意,某人参加B种竞猜活动,结束时答题数=1,2,…,6, 5分
则,,,,
, . 11分
所以,的分布列是
1
2
3
4
5
6
P
设,
则
∴,
∴ E==. 13分
答:某人参加A种竞猜活动只获得一个福娃奖品的概率为;某人参加B种竞猜活动,结束时答题数为,E为.
(18)(本小题共13分)
解;如图,建立直角坐标系,依题意:设椭圆方
程为(a>b>0), 1分
(I)依题意: 4分
椭圆M的离心率大于0.7,所以.
椭圆方程为. 6分
(II)因为直线l过原点与椭圆交于点,设椭圆M的左焦点为.
由对称性可知,四边形是平行四边形.
的面积等于的面积. 8分
∵
已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
运输工具 |
运输费单价:元/(吨?千米) |
冷藏费单价:元/(吨?时) |
固定费用:元/次 |
汽车 |
2 |
5 |
200 |
火车 |
1.6 |
5 |
2280 |
(1)汽车的速度为 千米/时,火车的速度为 千米/时:
(2)设每天用汽车和火车运输的总费用分别为汽(元)和火(元),分别求汽、火与 的函数关系式(不必写出的取值范围),及为何值时汽>火(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
查看习题详情和答案>>
必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共50分)
一、选择题(本大题共10小题,每小题5分,满分50分)
1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为( )
A.{1,2,3,4,5,6} B. {7,8,9}
C.{7,8} D. {1,2,4,5,6,7,8,9}
2、计算复数(1-i)2-等于( )
A.0 B.2 C. 4i D. -4i
查看习题详情和答案>>2 | 3 |
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释. 查看习题详情和答案>>