摘要:则 ∴所求椭圆方程.
网址:http://m.1010jiajiao.com/timu_id_471399[举报]
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
(本小题满分12分)标准椭圆的两焦点为,在椭圆上,且. (1)求椭圆方程;(2)若N在椭圆上,O为原点,直线的方向向量为,若交椭圆于A、B两点,且NA、NB与轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.
查看习题详情和答案>>(本小题满分12分)标准椭圆的两焦点为,在椭圆上,且. (1)求椭圆方程;(2)若N在椭圆上,O为原点,直线的方向向量为,若交椭圆于A、B两点,且NA、NB与轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.