摘要:(Ⅰ)由得.
网址:http://m.1010jiajiao.com/timu_id_467678[举报]
(Ⅰ)如图1,A,B,C是平面内的三个点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,试证明:存在实数λ,使得:
=λ
+(1-λ)
.
(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
=m
,
=n
,试探究:
+
的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.
查看习题详情和答案>>
PC |
PA |
PB |
(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
AP |
AB |
AQ |
AC |
1 |
m |
1 |
n |
(Ⅰ)求证:
=
;
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
=
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n0)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
C | m n |
n |
m |
C | m-1 n-1 |
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n] |
1-(1+x) |
(1+x)n+1-(1+x) |
x |
()(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
查看习题详情和答案>>