摘要:16[解](Ⅰ)

网址:http://m.1010jiajiao.com/timu_id_467631[举报]

在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和能被3整除的概率.

【解析】本试题主要考查了古典概型概率的求解。第一问中,基本事件数为共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种利用古典概型可知,P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种可得概率值5 /16 ;

解:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.

(1)其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种

故取出的两个小球上标号为相邻整数的概率P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种

故取出的两个小球上标号之和能被3整除的概率为5 /16 ;

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网