摘要:(Ⅲ)求到平面的距离. 变式:
网址:http://m.1010jiajiao.com/timu_id_467492[举报]
已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
=
.
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
、点F(-c,0)、曲线C:
+
=1(a>b>0,c=
),则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
查看习题详情和答案>>
d2 |
d1 |
| ||
2 |
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2 |
c |
x2 |
a2 |
y2 |
b2 |
a2-b2 |
已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且.
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线、点F(-c,0)、曲线C:,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断______ (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
查看习题详情和答案>>
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线、点F(-c,0)、曲线C:,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断______ (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
查看习题详情和答案>>
现有变换公式T:可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.
查看习题详情和答案>>
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.
查看习题详情和答案>>
现有变换公式T:
可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数. 查看习题详情和答案>>
|
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2 |
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数. 查看习题详情和答案>>