题目内容
现有变换公式T:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_ST/0.png)
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_ST/1.png)
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.
【答案】分析:(1)先根据题a2-b2=2,a2+b2=4,联立方程组,求的a和b,则椭圆方程方程可得.根据椭圆的性质可气的焦点坐标,代入变换公式中即可求的点F1′和F2′的坐标.
(2)依题意设不动点P的坐标为(m,n)依题意则有
m+
n=m,求的m和n的关系代入椭圆方程中求的n和m,则不动点坐标可得.
(3)设曲线M在变换T下的不动点P(x,y)分情况看椭圆和双曲线时,先根据变换公式求的x和y的关系,代入椭圆或双曲线方程看方程得解.
解答:解:(1)依题意可知
解得a2=3,b2=1
∴椭圆方程为
,焦点坐标为F1(
,0),F2(-
,0)
依题意F1′的坐标为(
,
),F2′(-
,-
)
(2)依题意设不动点P的坐标为(m,n)依题意则有
m+
n=m,整理的m=3n,代入椭圆方程得
,解得n=
,m=
或n=-
,m=-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/16.png)
∴不动点坐标为(
,
)(-
,-
)
(3)由(2)可知,曲线M在变换T下的不动点P(x,y)需满足
情形一:据题意,不妨设椭圆方程为
(m>0,n>0),
则有
.
因为m>0,n>0,所以
恒成立,
因此椭圆在变换T下的不动点必定存在,且一定有2个不动点.
情形二:设双曲线方程为
(mn<0),
则有
,因为mn<0,
故当9n+m=0时,方程
无解;
当9n+m≠0时,故要使不动点存在,则需
,
因此,当且仅当
时,双曲线在变换T下一定有2个不动点.否则不存在不动点.
进一步分类可知,
(i)当n<0,m>0时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/29.png)
.
即双曲线的焦点在
轴上时,需满足
时,双曲线在变换
下一定有2个不动点.否则不存在不动点.
(ii)当n>0,m<0时,
.
即双曲线的焦点在y轴上时,需满足
时,双曲线在变换T下一定有2个不动点.否则不存在不动点.
点评:本题主要考查了圆锥曲线的共同特征.考查了学生对圆锥曲线知识的综合掌握.
(2)依题意设不动点P的坐标为(m,n)依题意则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/1.png)
(3)设曲线M在变换T下的不动点P(x,y)分情况看椭圆和双曲线时,先根据变换公式求的x和y的关系,代入椭圆或双曲线方程看方程得解.
解答:解:(1)依题意可知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/2.png)
∴椭圆方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/5.png)
依题意F1′的坐标为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/9.png)
(2)依题意设不动点P的坐标为(m,n)依题意则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/16.png)
∴不动点坐标为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/20.png)
(3)由(2)可知,曲线M在变换T下的不动点P(x,y)需满足
情形一:据题意,不妨设椭圆方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/21.png)
则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/22.png)
因为m>0,n>0,所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/23.png)
因此椭圆在变换T下的不动点必定存在,且一定有2个不动点.
情形二:设双曲线方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/24.png)
则有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/25.png)
故当9n+m=0时,方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/26.png)
当9n+m≠0时,故要使不动点存在,则需
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/27.png)
因此,当且仅当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/28.png)
进一步分类可知,
(i)当n<0,m>0时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/30.png)
即双曲线的焦点在
轴上时,需满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/31.png)
下一定有2个不动点.否则不存在不动点.
(ii)当n>0,m<0时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/32.png)
即双曲线的焦点在y轴上时,需满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181151188336864/SYS201310241811511883368022_DA/33.png)
点评:本题主要考查了圆锥曲线的共同特征.考查了学生对圆锥曲线知识的综合掌握.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目