摘要:(Ⅲ)证明:.当=-1时..其定义域是.
网址:http://m.1010jiajiao.com/timu_id_447855[举报]
21. 已知定义在R上的函数f(x)和数列{an}满足下列条件:
a1=a, an=f(an-1)(n=2,3,4,…), a2≠a1,
f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…).
其中a为常数,k为非零常数.
(Ⅰ)令bn=an+1-an(n∈N*),证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)当|k|<1时,求
an.
7、9、10班同学做乙题,其他班同学任选一题,若两题都做,则以较少得分计入总分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),
,其中e=2.718 28…是自然对数的底数,a∈R.
(1)若a=-1,求f(x)的极值;
(2)求证:在(1)的条件下,
;
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
(乙)定义在(0,+∞)上的函数
,其中e=2.718 28…是自然对数的底数,a∈R.
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围;并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax. 试证明:对
,当n≥2时,有![]()