摘要:解析式.待定系数法 例1.若.且..求的值.8 变式1:若二次函数的图像的顶点坐标为.与y轴的交点坐标为.则 变式2:若的图像x=1对称.则c=2. f(x)=3x-12x+11
网址:http://m.1010jiajiao.com/timu_id_4463238[举报]
根据下列条件分别求出函数f(x)的解析式
观察法:(1)f(x+
)=x2+
求f(x);
换元法:(2)f(x-2)=x2+3x+1求f(x);
待定系数法:(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
复合函数的解析式:(4)已知f(x)=x2-1,g(x)=
,求f[g(x)]]和g[f(x)]的解析式,交代定义域.
查看习题详情和答案>>
观察法:(1)f(x+
1 |
x |
1 |
x2 |
换元法:(2)f(x-2)=x2+3x+1求f(x);
待定系数法:(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
复合函数的解析式:(4)已知f(x)=x2-1,g(x)=
x+1 |
某上市股票在30天内每股的交易价格(元)与时间(天)所组成的有序数对落在下图中的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示.
第t天 |
4 |
10 |
16 |
22 |
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格(元)与时间(天)所满足的函数关系式;
⑵根据表中数据确定日交易量(万股)与时间(天)的一次函数关系式;
⑶在(2)的结论下,用(万元)表示该股票日交易额,写出关于的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?
【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;
(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;
(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.
查看习题详情和答案>>