摘要:(四)归纳小结 函数的单调性一般是先根据图象判断.再利用定义证明.画函数图象通常借助计算机.求函数的单调区间时必须要注意函数的定义域.单调性的证明一般分五步: 取 值 → 作 差 → 变 形 → 定 号 → 下结论
网址:http://m.1010jiajiao.com/timu_id_4460168[举报]
若对任意x∈A,y∈B,(A、B⊆R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:
①f(x,y)=x2+y2;②f(x,y)=(x-y)2③f(x,y)=
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是
查看习题详情和答案>>
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:
①f(x,y)=x2+y2;②f(x,y)=(x-y)2③f(x,y)=
| x-y |
能够成为关于的x、y的广义“距离”的函数的所有序号是
①
①
.函数f(x)=2cos2x+sin2x-1,给出下列四个命题
①函数在区间[
,
]上是减函数;②直线x=
是函数图象的一条对称轴;③函数f(x)的图象可由函数y=
sin2x的图象向左平移
而得到;④若x∈[0,
],则f(x)的值域是[-1,
].其中所有正确的命题的序号是( )
①函数在区间[
| π |
| 8 |
| 5π |
| 8 |
| π |
| 8 |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 2 |
| A、①② | B、①③ | C、①②④ | D、②④ |
诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:2002年诺贝尔奖发放后基金总额约为19800万美元.设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(2002年记为f(1),2003年记为f(2),…,依此类推)
(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2012年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.
(参考数据:1.062410=1.83,1.031210=1.36) 查看习题详情和答案>>
(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2012年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.
(参考数据:1.062410=1.83,1.031210=1.36) 查看习题详情和答案>>