摘要:24. 已知:如图.C为BE上一点.点A.D分别在BE的两侧.AB//ED.AB=CE. BC=ED.试猜AC与CD有怎样的数量关系?并加以说明.
网址:http://m.1010jiajiao.com/timu_id_4452348[举报]
已知:如图1,在DE上取一点A,以AD、AE为正方形的一边在同一侧作正方形ABCD和正方形AEFG,连接DG、BE,则线段DG、BE之间满足DG=BE且DG⊥BE;
根据所给图形完成以下问题的探索、证明和计算:
(1)如图2,将正方形AEFG绕A点顺时针旋转α度,即∠BAG=α (0°<α<180°),那么(1)中的结论是否仍成立?若不成立请说明理由,若成立请给出证明.
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,S是否有最大值?若有,求出S的最大值及相应的α值.
查看习题详情和答案>>
根据所给图形完成以下问题的探索、证明和计算:
(1)如图2,将正方形AEFG绕A点顺时针旋转α度,即∠BAG=α (0°<α<180°),那么(1)中的结论是否仍成立?若不成立请说明理由,若成立请给出证明.
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,S是否有最大值?若有,求出S的最大值及相应的α值.
查看习题详情和答案>>
已知:抛物线y=ax2+bx+c的对称轴为x=
且经过点C(0,-3)和点F(3,-2
).
(1)求抛物线的解析式:
(2)如图1,设抛物线y=ax2+bx+c与x 轴交于A、B两点,与y 轴交于点C,过A、B、C三点的⊙M交y 轴于另一点D,连接AD、DB,设∠CDB=α,∠ADC=β,求cos(α-β)的值;
(3)如图2,作∠CDB的平分线DE交⊙M于点E,连接BE,问:在坐标轴上是否存在点P,使得以P、D、E为顶点的三角形与△DEB相似.若存在,求出所有满足条件的点P的坐标(不包括点B);若不存在,请说明理由.
查看习题详情和答案>>
3 |
3 |
(1)求抛物线的解析式:
(2)如图1,设抛物线y=ax2+bx+c与x 轴交于A、B两点,与y 轴交于点C,过A、B、C三点的⊙M交y 轴于另一点D,连接AD、DB,设∠CDB=α,∠ADC=β,求cos(α-β)的值;
(3)如图2,作∠CDB的平分线DE交⊙M于点E,连接BE,问:在坐标轴上是否存在点P,使得以P、D、E为顶点的三角形与△DEB相似.若存在,求出所有满足条件的点P的坐标(不包括点B);若不存在,请说明理由.
查看习题详情和答案>>
如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当=2时,求证:AP⊥BD;
②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.