摘要:19.解:(1)令红色球为x个.则依题意得, 所以得x=15或x=21.又红色球多于白色球.所以x=21.所以红色球为21个.白色球为15个. (2)设从袋中任取3个小球.至少有一个红色球的事件为A.均为白色球的事件为B. 则P= =
网址:http://m.1010jiajiao.com/timu_id_4450558[举报]
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望. 查看习题详情和答案>>
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望. 查看习题详情和答案>>
盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得-1分,现从盒内一次性取3个球.
(1)求取出的三个球得分之和恰为1分的概率
(2)设 ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.
查看习题详情和答案>>
(1)求取出的三个球得分之和恰为1分的概率
(2)设 ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.
(2012•天津模拟)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.
查看习题详情和答案>>
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.