网址:http://m.1010jiajiao.com/timu_id_4447366[举报]
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
第二问,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
查看习题详情和答案>>
已知函数f(x)=sin(ωx+φ)
(0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得
,
所以
第二问中,,
可以得到单调区间。
解:(Ⅰ)由题意得,
,…………………1分
代入点
,得
…………1分
,
∴
(Ⅱ),
的单调递减区间为
,
.
查看习题详情和答案>>
若函数在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数
的取值范围.
【解析】第一问中,利用定义,判定由题意得,由
,所以
第二问中, 由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点,从而得到t的范围。
解(I)由题意得,由
,所以
(6分)
(II)由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点。
查看习题详情和答案>>
已知函数 R).
(Ⅰ)若 ,求曲线
在点
处的的切线方程;
(Ⅱ)若 对任意
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,
.
因为切点为(
),
则
,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即
即可。
Ⅰ)当时,
.
,
因为切点为(),
则
,
所以在点()处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以
恒成立,
故在
上单调递增,
……12分
要使恒成立,则
,解得
.……15分
解法二:
……7分
(1)当时,
在
上恒成立,
故在
上单调递增,
即
.
……10分
(2)当时,令
,对称轴
,
则在
上单调递增,又
① 当,即
时,
在
上恒成立,
所以在
单调递增,
即
,不合题意,舍去
②当时,
,
不合题意,舍去 14分
综上所述:
查看习题详情和答案>>
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于
,所以
,得
联立方程,解方程组得
.
第二问中。由于即为即
.
当时,
,
,
,
所以
当
时,得
,由正弦定理得
,联立方程组
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分
又因为△ABC的面积等于,所以
,得
,………1分
联立方程,解方程组得.
……………2分
(Ⅱ)由题意得,
即.
…………2分
当时,
,
,
,
……1分
所以 ………………1分
当时,得
,由正弦定理得
,联立方程组
,解得
,
;
所以
查看习题详情和答案>>