题目内容
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.
第二问中。由于即为即.
当时, , , , 所以当时,得,由正弦定理得,联立方程组,解得,得到。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分
又因为△ABC的面积等于,所以,得,………1分
联立方程,解方程组得. ……………2分
(Ⅱ)由题意得,
即. …………2分
当时, , , , ……1分
所以 ………………1分
当时,得,由正弦定理得,联立方程组
,解得,; 所以
【答案】
(Ⅰ). (Ⅱ)
练习册系列答案
相关题目