摘要:解:(I) 正面向上次数m 3 2 1 0 概率P(m) 正面向上次数n 2 1 0 概率P(n) (II)甲获胜.则m>n,当m=3时.n=2,1,0,其概率为 当m=2时.n=1,0. 其概率为 当m=1时.n=0 其概率为 所以.甲获胜的概率为
网址:http://m.1010jiajiao.com/timu_id_4443311[举报]
已知函数f(x)=x2-ax+a(a∈R)同时满足:①不等式f(x)≤0 的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和为Sn=f(n).
(1)求数列{an}的通项公式;
(2)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数,令cn=1-
(n为正整数),求数列{cn}的变号数.
查看习题详情和答案>>
(1)求数列{an}的通项公式;
(2)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数,令cn=1-
a | an |
(2013•淄博二模)已知函数f(x)=
sinωx•cosωx+cos2ωx-
(ω>0),其最小正周期为
.
(I)求f(x)的表达式;
(II)将函数f(x)的图象向右平移
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
]上有且只有一个实数解,求实数k的取值范围.
查看习题详情和答案>>
3 |
1 |
2 |
π |
2 |
(I)求f(x)的表达式;
(II)将函数f(x)的图象向右平移
π |
8 |
π |
2 |
已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),
(1)求数列{an}的通项公式;
(2)试构造一个数列{bn},(写出{bn}的一个通项公式)满足:对任意的正整数n都有bn<an,且
=2,并说明理由;
(3)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
(n为正整数),求数列{cn}的变号数.
查看习题详情和答案>>
(1)求数列{an}的通项公式;
(2)试构造一个数列{bn},(写出{bn}的一个通项公式)满足:对任意的正整数n都有bn<an,且
lim |
n→∞ |
an |
bn |
(3)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
a |
an |
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
.
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
(a为参数),点Q极坐标为(2,
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
+
+
=1,求x+y+z的取值范围.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵A=
|
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
|
7 |
4 |
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2 |
16 |
y2 |
5 |
z2 |
4 |