题目内容

已知函数f(x)=x2-ax+a(a∈R)同时满足:①不等式f(x)≤0 的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和为Sn=f(n).
(1)求数列{an}的通项公式;
(2)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数,令cn=1-
aan
(n为正整数),求数列{cn}的变号数.
分析:(1)根据f(x)≤0的解集有且只有一个元素,可得△等于0,从而可求a的值,即可求出函数解析式,从而可求数列{an}的通项公式;
(2))根据cn=1-
a
an
,可得cn=
-3,n=1
1-
4
2n-5
,n≥2
,验证n≥3时,数列{cn}递增,确定n≥3时,有且只有1个变号数;判断n≤2时变号数有2个,最后综合答案可得.
解答:解:(1)∵f(x)≤0的解集有且只有一个元素,
∴△=a2-4a=0
∴a=0或4,
当a=0时,函数f(x)=x2在(0,+∞)上递增,故不存在0<x1<x2,使得不等式f(x1)>f(x2)成立;
当a=4时,函数f(x)=x2-4x+4在(0,2)上递减,故存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
综上,得a=4,f(x)=x2-4x+4,∴Sn=n2-4n+4
n≥2 时,an=Sn-Sn-1=2n-5,n=1 时,a1=1
∴an=
1,n=1
2n-5,n≥2

(2)∵cn=1-
a
an

cn=
-3,n=1
1-
4
2n-5
,n≥2

∵n≥3时,Cn+1-Cn=
4
2n-5
-
4
2n-3
=
8
(2n-5)(2n-3)
>0,
∴n≥3时,数列{cn}递增,
∵a4=-
1
3
<0,由1-
4
2n-5
>0
n≥5,可知a4-a5<0,即n≥3时,有且只有1个变号数;
又∵C1=-3,C2=-5,C3=-3,即C1-C2<0,C2-C3<0,
∴此处变号数有2个.
综上得数列共有3个变号数,即变号数为3.
点评:本题考查数列与函数的综合,考查数列的通项,考查新定义,解题的关键是理解新定义,判断数列的单调性,从而确定数列的变号数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网