摘要:本讲概念性强.抽象性强.思维方法独特.因此要立足于基础知识.基本方法.基本问题的练习.恰当选取典型例题.构建思维模式.造就思维依托和思维的合理定势.1.使用公式P(A)=计算时.确定m.n的数值是关键所在,其计算方法灵活多变,没有固定的模式.可充分利用排列组合知识中的分类计数原理和分步计数原理.必须做到不重复不遗漏. 复习这部分内容及解答此类问题首先必须使学生明确判断两点:(1)对于每个随机实验来说.所有可能出现的实验结果数n必须是有限个,(2)出现的所有不同的实验结果数m其可能性大小必须是相同的.只有在同时满足的条件下.运用的古典概型计算公式P(A)=m/n得出的结果才是正确的.
网址:http://m.1010jiajiao.com/timu_id_4433692[举报]
![](http://thumb.zyjl.cn/pic3/upload/images/201203/54/f59eae58.png)
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)、选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)选修4-2:矩阵与变换(本小题满分10分)
若点A(2,2)在矩阵M=
|
(3)选修4-2:矩阵与变换(本小题满分10分)
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.
(4)选修4-5:不等式选讲(本小题满分10分)
已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201106/28/e7eb715e.png)
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
|
|
α |
α |
β |
C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
|
|
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3. 查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic3/upload/images/201112/50/dcc559c5.png)
A、选修4-1:
几何证明选讲.如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求∠DAC的度数与线段AE的长.
B、选修4-2:矩阵变换
求圆C:x2+y2=4在矩阵A=[
|
C、选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2sinθ,它们相交于A、B两点,求线段AB的长.
D、选修4-5:不等式选讲
已知a、b、c为正数,且满足acos2θ+bsin2θ<c.求证:
a |
b |
c |
![](http://thumb.zyjl.cn/pic3/upload/images/201211/2/241dc76b.png)
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
|
(1)求A的逆矩阵A-1;
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
|
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
(2012•厦门模拟)本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知e1=
是矩阵M=
属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若a=
,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
+
的最小值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知e1=
|
|
(I)求矩阵M;
(Ⅱ)若a=
|
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
AB |
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
AB |
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1 | ||
(x+y
|
1 | ||
(x-y
|