网址:http://m.1010jiajiao.com/timu_id_4433227[举报]
(2009四川卷理)(本小题满分14分)
设数列的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列的通项公式;
(II)记,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
本小题主要考查数列、不等式等基础知识、考查化归思想、分类整合思想,以及推理论证、分析与解决问题的能力。
查看习题详情和答案>>已知是等差数列,其前n项和为
,
是等比数列,且
(I)求数列与
的通项公式;
(II)记求证:
,
。
【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.
查看习题详情和答案>>
已知函数的定义域为
且
,对任意
都有
数列满足
N
.证明函数
是奇函数;求数列
的通项公式;令
N
, 证明:当
时,
.
(本小题主要考查函数、数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)
查看习题详情和答案>>你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?
你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.
化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.
1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.
2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?