摘要:.=( ) (D)0
网址:http://m.1010jiajiao.com/timu_id_4429889[举报]
(05年浙江卷文)(14分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=
PA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)求证:OD∥平面PAB;
(Ⅱ) 求直线OD与平面PBC所成角的大小.
![]()
(05年浙江卷理)(14分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)求证:OD∥平面PAB;
(Ⅱ)当k=
时,求直线PA与平面PBC所成角的大小;
(Ⅲ) 当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?
![]()
(05年浙江卷理)(14分)
设点
(
,0),
和抛物线
:y=x2+an x+bn(n∈N*),其中an=-2-4n-
,
由以下方法得到: x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点
在抛物线
:y=x2+an x+bn上,点
(
,0)到
的距离是
到
上点的最短距离.
(Ⅰ)求x2及C1的方程.
(Ⅱ)证明{
}是等差数列.