摘要:18.已知点A.试在y轴和直线y=x上各取一点B.C.使△ABC的周长最小.
网址:http://m.1010jiajiao.com/timu_id_4420424[举报]
已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标. 查看习题详情和答案>>
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标. 查看习题详情和答案>>
已知在平面直角坐标系xOy内,点P(x,y)在曲线C:
(θ为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
)=0.
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值. 查看习题详情和答案>>
|
π |
4 |
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值. 查看习题详情和答案>>
已知在平面直角坐标系xOy内,点P(x,y)在曲线C:
(θ为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
)=0.
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值.
查看习题详情和答案>>
|
π |
4 |
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值.