题目内容

       已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;

       (Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;

       (Ⅱ)求切线长|PA|的最小值;

(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

       即点P(a,b)落在根轴l:x+y-4=0上;    ……………………  3分

    ⑵

    ∴当a=2时即P为(2,2)点时有    …………………  6分

⑶ 作M(0,2)关于直线L: x+y=4的对称点N,求得N(2,4),连接NO则NO分别与直线L、圆O的交点即为使|PM|+|PQ|的值最小的点P、Q; …………………  8分

       证明如下:

       在L上任取不同于点P的P1点,

       连接P1O交圆O于Q1,则

       |P1M|+|P1Q1|=|P1M|+|P1O|-1=|P1N|+|P1O|-1>|NO|-1

       而|PM|+|PQ|=|PM|+|PO|-1=|PN|+|PO|-1=|NO|-1 ,

       故得证;  …………… 11分

       下求|PM|+|PQ|的最小值及点P的坐标:

       (|PM|+|PQ|)Min=|NO|-1=

       联立ON与直线L的方程可得 …… 13分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网