摘要:17.对于函数.当时.的最大值为. 试用反证法证明: 证明:假设.则.所以可得 .由得 与(1)矛盾,所以原命题成立.
网址:http://m.1010jiajiao.com/timu_id_4420318[举报]
对于函数
与常数
,若
恒成立,则称
为函数
的一个“P数对”;若
恒成立,则称
为函数
的一个“类P数对”.设函数
的定义域为
,且
.
(1)若
是
的一个“P数对”,求
;
(2)若
是
的一个“P数对”,且当
时![]()
,求
在区间![]()
上的最大值与最小值;
(3)若
是增函数,且
是
的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①
与
+2
;②
与![]()
.
对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数
不存在“和谐区间”.
(2)已知:函数
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如
的函数为例)
查看习题详情和答案>>
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数
(2)已知:函数
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如
查看习题详情和答案>>
对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数
不存在“和谐区间”.
(2)已知:函数
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如
的函数为例)
查看习题详情和答案>>
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数
(2)已知:函数
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如
查看习题详情和答案>>