题目内容
对于函数与常数,若恒成立,则称为函数的一个“P数对”;若恒成立,则称为函数的一个“类P数对”.设函数的定义域为,且.
(1)若是的一个“P数对”,求;
(2)若是的一个“P数对”,且当时,求在区间上的最大值与最小值;
(3)若是增函数,且是的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①与+2;②与.
(3)由是的一个“类P数对”,可知恒成立,
即恒成立,令,可得,
即对一切恒成立,
所以…,
故. …………………………………14分
若,则必存在,使得,
由是增函数,故,
又,故有.…………………………………18分
练习册系列答案
相关题目