摘要: 已知α.β表示两个不同的平面.m为平面α内的 一条直线.则“ 是“ 的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [解析]:由平面与平面垂直的判定定理知如果m为平面α内的 一条直线,,则,反过来则不一定.所以“ 是“ 的必要不充分条件. 答案:B. [命题立意]:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念. [解析]:函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A. 答案:A. [命题立意]:本题考查了函数的图象以及函数的定义域.值域.单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.

网址:http://m.1010jiajiao.com/timu_id_4418676[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网